Kinder- und Jugendmedizin 2007; 7(06): 321-327
DOI: 10.1055/s-0038-1625682
Hals-Nasen-Ohren-Erkrankungen
Schattauer GmbH

Diagnostik und Therapie der auditorischen Neuropathie

Diagnosis and treatment of auditory neuropathy
Martin Ptok
1   Klinik und Poliklinik für Phoniatrie und Pädaudiologie, Medizinische Hochschule Hannover (Direktor: Prof. Dr. med. M. Ptok)
› Author Affiliations
Further Information

Publication History

Eingegangen: 03 July 2007

angenommen: 12 July 2007

Publication Date:
10 January 2018 (online)

Zusammenfassung

Die auditorische Neuropathie (AN) zeichnet sich durch nachweisbare evozierbare otoakustische Emissionen (EOAE) und nicht ableitbare bzw. nur mit erhöhten Schwellen ableitbare auditorisch evozierte Hirnstammpotenziale aus. Als Ursache mus eine Funktionsstörung der inneren Haarzellen und/oder eine Störung der neuronalen Reizweiterleitung bei intakten äußeren Haarzellen angenommen werden.

Betroffene Patienten verhalten sich in schweren Fällen wie Schwerhörige mit einer hochgradigen kochleären Schwerhörigkeit, in milderen Fällen kann das Tonschwellenaudiogramm weitgehend normal sein, das Sprachverständnis ist meistens jedoch deutlich eingeschränkt.

Die auditorische Neuropathie scheint häufiger zu sein als noch vor einiger Zeit angenommen. Bei anamnestisch zu vermutender Schwerhörigkeit, insbesondere bei Kindern mit einem Sprachentwicklungsrückstand – gerade, wenn ein Sprachaudiogramm noch nicht durchführbar erscheint – gutem Tonschwellenaudiogramm und nachweisbaren EOAE ist die auditorische Neuropathie immer diffenzialdiagnostisch zu berücksichtigen.

Summary

The combined findings of „normal evoked otoacoustic emissions (EOAE) and absent or markedly disturbed auditory evoked potentials from the brainstem has been named auditory neuropathy. The pure tone thresholds in these patients range from mild to severe loss. The loss of speech comprehension is out of proportion in comparison to the pure tone threshold elevation. Presumably, cochlear function and in particular outer hair cell function, is normal in these patients but also suggests that the inner hair cell/VIII nerve functional unit is abnormal. Disruption in neural synchrony has previously been postulated as a reasonable explanation for the absent auditory brainstem response.

The entire set of findings, consistently seen in these patients, supports the importance of the crosscheck principle in diagnostic evaluation especially in children with delayed and/or impaired language acquisition. It is of ponderous importance that this disorder is not being confused with sensory hearing loss.

 
  • Literatur

  • 1 Berlin CI, Goforth-Barter L, St John P, Hood LJ. Auditory neuropathy: three time courses after early identification. ARO Midwinter Meeting Astracts 22. Midwinter Meeting. 1999: 169 Abstr. 668.
  • 2 Berlin CI, Morlet T, Hood LJ. Auditory neuropathy/dyssynchrony: its diagnosis and management. Pediatr Clin North Am 2003; 50: 331-40 vii-viii.
  • 3 Brandt A, Striessnig J, Moser T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 2003; 23: 10832-40.
  • 4 Davis H, Hirsh SK. A slow brain stem response for low-frequency audiometry. Audiology 1979; 18: 445-61.
  • 5 Ding DL, Wang J, Salvi R. et al. Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas. Mechanisms of damage and protection. Ann N Y Acad Sci 1999; 884: 152-70.
  • 6 Dou H, Vazquez AE, Namkung Y. et al. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 2004; 5: 215-26.
  • 7 Doyle KJ, Sininger Y, Starr A. Auditory neuropathy in childhood. Laryngoscope 1998; 108: 1374-7.
  • 8 Foerst A, Beutner D, Lang-Roth R. et al. Prevalence of auditory neuropathy/synaptopathy in a population of children with profound hearing loss. Int J Pediatr Otorhinolaryngol 2006; 70: 1415-22.
  • 9 Gorga MP, Neely ST, Bergmann B. et al. Otoacoustic emissions from normal-hearing and hearingimpaired subjects: distortion product responses. J Acoust Soc Am 1993; 93: 2050-60.
  • 10 Hauser R, Probst R, Harris FP. Die klinische Anwendung otoakustischer Emissionen kochleärer Distorsionsprodukte. Laryngorhinootologie 1991; 70: 123-31.
  • 11 Henry WR, Mulroy MJ. Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift. Hear Res 1995; 84: 81-90.
  • 12 Katona G, Buki B, Farkas Z. et al. Transitory evoked otoacoustic emission (TEOAE) in a child with profound hearing loss. Int J Pediatr Otorhinolaryngol 1993; 26: 263-7.
  • 13 Khimich D, Nouvian R, Pujol R. et al. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 2005; 434 (7035): 889-94.
  • 14 Konradsson KS. Bilaterally preserved otoacoustic emissions in four children with profound idiopathic unilateral sensorineural hearing loss. Audiology 1996; 35: 217-27.
  • 15 Konradsson K. Bilateral otoacoustic emissions combined with severe idiopathic unilateral sensorineural heraing impairment. European consensus development conference on neonatal hearing screening. 1998: 130.
  • 16 Kraus N, McGee T, Ferre J. et al. Mismatch negativity in the neurophysiologic/behavioral evaluation of auditory processing deficits: a case study. Ear Hear 1993; 14: 223-4.
  • 17 Kraus N, Ozdamar O, Stein L, Reed N. Absent auditory brain stem response: peripheral hearing loss or brain stem dysfunction?. Laryngoscope 1984; 94: 400-6.
  • 18 Lacas-Gervais S, Guo J, Strenzke N. et al. BetaIV-Sigma1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol 2004; 166: 983-90.
  • 19 Lutman ME, Mason SM, Sheppard S, Gibbin KP. Differential diagnostic potential of otoacoustic emissions: a case study. Audiology 1989; 28: 205-10.
  • 20 Madden C, Hilbert L, Rutter M. et al. Pediatric cochlear implantation in auditory neuropathy. Otol Neurotol 2002; 23: 163-8.
  • 21 Mason JC, De-Michele A, Stevens C. et al. Cochlear implantation in patients with auditory neuropathy of varied etiologies. Laryngoscope 2003; 113: 45-9.
  • 22 Michalewski HJ, Prasher DK, Starr A. Latency variability and temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) in normal subjects. Electroencephalogr Clin Neurophysiol 1986; 65: 59-71.
  • 23 Michalewski HJ, Starr A, Nguyen TT. et al. Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy. Clin Neurophysiol 2005; 116: 669-80.
  • 24 Migliosi V, Modamio-Hoybjor S, Moreno-Pelayo MA. et al. Q829X, a novel mutation in the gene encoding otoferlin (OTOF), is frequently found in Spanish patients with prelingual non-syndromic hearing loss. J Med Genet 2002; 39: 502-6.
  • 25 Mirghomizadeh F, Pfister M, Apaydin F. et al. Substitutions in the conserved C2C domain of otoferlin cause DFNB9, a form of nonsyndromic autosomal recessive deafness. Neurobiol Dis 2002; 10: 157-64.
  • 26 Parkinson NJ, Olsson CL, Hallows JL. et al. Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 2001; 29: 61-5.
  • 27 Peterson A, Shallop J, Driscoll C. et al. Outcomes of cochlear implantation in children with auditory neuropathy. J Am Acad Audiol 2003; 14: 188-201.
  • 28 Phillips DP. Auditory gap detection, perceptual channels, and temporal resolution in speech perception. J Am Acad Audiol 1999; 10: 343-54.
  • 29 Platzer J, Engel J, Schrott-Fischer A. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102: 89-97.
  • 30 Prieve BA, Gorga MP, Neely ST. Otoacoustic emissions in an adult with severe hearing loss [published erratum appears in J Speech Hear Res 1991 Jun;34(3):703]. J Speech Hear Res 1991; 34: 379-85.
  • 31 Pröschel U, Eysholdt U. Untersuchungen zur Spezifität und Sensitivität click-evozierter otoakustischer Emissionen (TEOAE). Laryngol Rhinol Otol 1995; 74: 481-8.
  • 32 Ptok M. Otoakustische Emissionen, auditorisch evozierte Potentiale, Tonschwellengehör und Sprachverständnis bei auditorischer Neuropathie. HNO 2000; 48: 28-32.
  • 33 Rance G, Beer DE, Cone-Wesson B. et al. Clinical findings for a group of infants and young children with auditory neuropathy. Ear Hear 1999; 20: 238-52.
  • 34 Rask-Andersen H, Ekvall L, Scholtz A. et al. Structural/audiometric correlations in a human inner ear with noise-induced hearing loss. Hear Res 2000; 141: 129-39.
  • 35 Rodriguez-Ballesteros M, del-Castillo FJ, Martin Y. et al. Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF). Hum Mutat 2003; 22: 451-6.
  • 36 Roux I, Safieddine S, Nouvian R. et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006; 127: 277-89.
  • 37 Salvi RJ, Wang J, Ding D. et al. Auditory deprivation of the central auditory system resulting from selective inner hair cell loss: animal model of auditory neuropathy. Scand Audiol 1999; (Suppl. 51) 1-12.
  • 38 Scaioli V, Pareyson D, Avanzini G, Sghirlanzoni A. et al. F response and somatosensory and brainstem auditory evoked potential studies in HMSN type I and II. J Neurol Neurosurg Psychiatry 1992; 55: 1027-31.
  • 39 Schlögel H, Stephan K, Böheim K, Welzl-Müller K. Distorsionsprodukt otoakustische Emissionen bei normalem Hörvermögen und bei sensoneurinaler Schwerhörigkeit. HNO 1995; 43: 19-24.
  • 40 Schöler C, Schönweiler R, Ptok M. Transitorisch evozierte und Distorsionsprodukte otoakustischer Emissionen bei fehlenden akustisch-evozierten Potentialen. HNO 1997; 45: 1008-15.
  • 41 Sininger Y. Auditory neuropathy in children. ASHA, SID 1997; 7: 6-11.
  • 42 Sininger Y, Hood LJ, Starr A. et al. Hearing loss due to auditory neuropathy. Audiology Today 1995; 7: 10-13.
  • 43 Starr A, Isaacson B, Michalewski HJ. et al. A dominantly inherited progressive deafness affecting distal auditory nerve and hair cells. J Assoc Res Otolaryngol 2004; 5: 411-26.
  • 44 Starr A, McPherson D, Patterson J. et al. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues. Brain 1991; 114 Jun (Suppl. 03) 1157-80.
  • 45 Starr A, Picton TW, Sininger Y. et al. Auditory neuropathy. Brain 1996; 119 Jun (Suppl. 03) 741-53.
  • 46 Starr A, Sininger YS, Pratt H. The varieties of auditory neuropathy. J Basic Clin Physiol Pharmacol 2000; 11: 215-30.
  • 47 Stein LK. Factors influencing the efficacy of universal newborn hearing screening. Pediatr Clin North Am 1999; 46: 95-105.
  • 48 Tapia MC, Almenar-Latorre A, Lirola M, Moro-Serrano M. Neuropatia auditiva. An Esp Pediatr 2000; 53: 399-404.
  • 49 Terhardt E. Akustische Kommunikation. Berlin, Heidelberg, New York: Springer; 1998
  • 50 Trehub SE, Schneider BA, Henderson JL. Gap detection in infants, children, and adults. J Acoust Soc Am 1995; 98 (05) (Suppl. 01) 2532-41.
  • 51 Varga R, Avenarius MR, Kelley PM. et al. OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele. J Med Genet 2006; 43: 576-81.
  • 52 Varga R, Kelley PM, Keats BJ. et al. Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. J Med Genet 2003; 40: 45-50.
  • 53 Welzl-Müller K, Stephan K, Stadlmann A. Clickevoked otoacoustic emissions in a child with unilateral deafness. Eur Arch Otorhinolaryngol 1993; 250: 366-8.
  • 54 Worthington DW, Peters JF. Quantifiable hearing and no ABR: paradox or error?. Ear Hear 1980; 1: 281-5.
  • 55 Yasunaga S, Grati M, Chardenoux S. et al. OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. Am J Hum Genet 2000; 67: 591-600.
  • 56 Yasunaga S, Grati M, Cohen-Salmon M. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 1999; 21: 363-9.
  • 57 Yellin MW, Jerger J, Fifer RC. Norms for disproportionate loss in speech intelligibility. Ear Hear 1989; 10: 231-4.
  • 58 Zeng FG, Kong YY, Michalewski HJ, Starr A. Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 2005; 93: 3050-63.
  • 59 Zhou R, Abbas PJ, Assouline JG. Electrically evoked auditory brainstem response in peripherally myelin-deficient mice. Hear Res 1995; 88: 98-106.
  • 60 Zhou R, Assouline JG, Abbas PJ. et al. Anatomical and physiological measures of auditory system in mice with peripheral myelin deficiency. Hear Res 1995; 88: 87-97.