Nuklearmedizin 2005; 44(03): 99-106
DOI: 10.1055/s-0038-1625713
Original Articles
Schattauer GmbH

The influence of filtered back-projection and iterative reconstruction on partial volume correction in PET

Der Einfluss der gefilterten Rückprojektion und der iterativen Rekonstruktion auf die Partialvolumen-Korrektur von PET-Daten
Rota E. Kops
1   Institut für Medizin (Direktor: Prof. Dr. med. K. Zilles), Forschungszentrum Jülich GmbH, Jülich
,
B. J. Krause
2   Abteilung Nuklearmedizin (Direktor: Prof. Dr. med. H.-W. Müller), Heinrich-Heine- Universität Düsseldorf, Abteilung Nuklearmedizin (Direktor: Prof. Dr. med. S. N. Reske), Radiologie III, Universitätsklinikum Ulm, Deutschland
› Author Affiliations
Further Information

Publication History

Received: 02 April 2004

in revised form: 09 September 2004

Publication Date:
10 January 2018 (online)

Summary

Aim: We assess the influence of the reconstruction algorithms [OS-EM for the iterative one vs. a filtered back-projection in Fourier space (DiFT)] on partial volume correction in PET employing a fully 3D 3-compartment MR based PVcorrection algorithm. The gray matter voxels in the PET image – after removal of the white matter and cerebrospinal fluid contribution – are corrected voxel-by-voxel using the image resolution. Material, methods: Phantom measurements and one healthy human brain FDG study were carried out. For the OSEM reconstruction, a combination of iteration steps and subset numbers (It/Sub) was used, whereby in case of no-convergence the image resolution had to be fitted. The results from the DiFT reconstruction were equivalent to those obtained from the OSEM reconstruction with 10/32 combination for objects with widespread activity concentration. For the sphere phantom, the mean recovery based on the actual values achieved 99.2% ± 1.8 for all spheres and all reconstruction modes and It/ sub combinations (except for 2/8). In case of the Hoffman 3D brain phantom the mean recovery of the cortical regions was 101% ± 1.2 (the increase based on the uncorrected values: 35.5% ± 1.5), while the subcortical regions reached a mean recovery of 80% with an increase of 43.9% ± 2.5. For the human data, an increase of the metabolized values of several cortical regions ranged between 42% and 48% independent from the reconstruction mode. Conclusions: Our data show that the 3-compartment fully 3-D MR based PV-correction is sensitive to the choice of reconstruction algorithms and to the parameter choice. They indicate that despite improved spatial resolution, the use of the iterative reconstruction algorithm for PV-correction results in similar recovery factors when compared to a correction using DiFT reconstruction, insofar the image resolution values are fitted at the It/Sub combinations.

Zusammenfassung

Ziel: Der Einfluss verschiedener Rekonstruktionsalgorithmen auf die Partialvolumen(PV)-Korrektur von PET-Daten wird untersucht. Material, Methoden: Ein auf MR-Daten basierender dreidimensionaler 3-Kompartment-PV-Korrekturalgorithmus; Phantom-Messungen und eine FDGStudie. Im PET-Bild wurden die Voxel der grauen Substanz mit Hilfe der Bildauflösung nach Entfernung des Beitrages der weißen Substanz und des Liquors korrigiert. Für die OSEM-Rekonstruktion wurde eine Kombination von Iterationsschritten und Anzahl von Subsets (It/Sub) benutzt. Bei zur Konvergenz unzureichenden Gesamtiterationsschritten wurde die Bildauflösung angepasst. Ergebnisse: Die FBPRekonstruktion war äquivalent zu der OSEM-Rekonstruktion mit der 10/32 Kombination für Objekte mit ausgedehnter Aktivitätsverteilung. Für das Kugelphantom erreichte die mittlere Wiedergewinnung bezogen auf die Sollwerte 99,2% ± 1,8 für alle Kugeln und It/Sub Kombinationen (außer für 2/8). Beim Hirnphantom war die mittlere Wiedergewinnung der kortikalen Regionen 101% ± 1,2 (Anstieg bezogen auf die unkorrigierten Werte: 35,5% ± 1,5), wogegen die subkortikalen Regionen eine mittlere Wiedergewinnung von 80% mit einem Anstieg von 43,9% ± 2,5 erreichten. Für die 18F-FDG-Daten eines menschlichen Gehirns bewegte sich der Anstieg der metabolischen Werte in den kortikalen Regionen zwischen 42% und 48%, unabhängig vom Rekonstruktionsmodus. Schlussfolgerung: Unsere Daten belegen, dass der auf MR-Daten basierende dreidimensionale 3-Kompartment-PV-Korrekturalgorithmus empfindlich gegenüber der Wahl des Rekonstruktionsalgorithmus und seiner Parameter ist. Die iterative Rekonstruktion liefert ähnliche Wiedergewinnungsfaktoren im Vergleich zu einer Korrektur nach einer FBP-Rekonstruktion, wenn die Bildauflösungswerte an die It/Sub Kombination angepasst werden.

 
  • References

  • 1 Adam LE, Zaers J, Ostertag H. et al. Performance evaluation of the whole-body PET scanner ECAT Exact HR+ following the IEC standard. IEEE Trans Nucl Sci 1997; 44: 1172-9.
  • 2 Bendriem B, Dewey SL, Schlyer DJ. et al. Quantitation of the human basal ganglia with positron emission tomography: a phantom study of the effect of contrast and axial positioning. IEEE Trans Med Imag 1991; 10: 216-21.
  • 3 Comtat C, Kinahan PE, Defrise M. et al. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 1998; 45: 1083-9.
  • 4 Cooke BE, Evans AC. A phantom to assess quantitative recovery of positron tomographs. J Comput Assist Tomogr 1983; 5: 876-80.
  • 5 ECAT Software Manual.
  • 6 Guzzardi R, Bellina C, Knoop B. et al. Methodologies for performance evaluation of positron emission tomographs. J Nucl Biol Med 1991; 35: 141-57.
  • 7 Held K, Rota Kops E, Krause BJ. et al. Markov random field segmentation of brain MR images. IEEE Trans Med Imag 1997; 16: 878-86.
  • 8 Hoffman EJ, Cutler PD, Guerrero TM. et al. Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of 18F-fluorodeoxyglucose uptake in the human brain. J Cereb Blood Flow Metab 1991; 11: A17-25.
  • 9 Hoffmann EJ, Huang SC, Phelps ME. Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299-308.
  • 10 Hoffmann EJ, Huang SC, Plummer D. et al. Quantitation in positron emission computed tomography: 6. Effect of nonuniform resolution. J Comput Assist Tomogr 1982; 5: 987-99.
  • 11 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994; 13: 601-9.
  • 12 Kessler RM, Ellis JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984; 3: 514-22.
  • 13 Labbè C, Froment JC, Kennedy A. et al. Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonace imaging. Alzheimer Dis Assoc Disord. Fall 1996; 10: 141-70.
  • 14 Liow JS, Strother SC, Rehm K. et al. Improved resolution for PET volume imaging through three-dimensional iterative reconstruction. J Nucl Med 1997; 38: 1623-31.
  • 15 Lipinski B, Herzog H, Rota Kops E. et al. Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information. IEEE Trans Med Imag 1997; 16: 129-36.
  • 16 Meltzer CC, Bryan RN, Holcomb HH. et al. A method of anatomical localization for positron emission tomography using magnetic resonance imaging. J Comput Assist Tomogr 1990; 14: 418-26.
  • 17 Meltzer CC, Cantwell MN, Greer PJ. et al. Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med 2000; 41: 1842-48.
  • 18 Meltzer CC, Kinahan PE, Greer PJ. et al. Comparative evaluation of MR-based partial volume correction schemes for PET. J Nucl Med 1999; 40: 2053-65.
  • 19 Meltzer CC, Leal JP, Mayberg HS. et al. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 1990; 14: 561-70.
  • 20 Meltzer CC, Zubieta JK, Links JM. et al. MRbased correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J Cereb Blood Flow Metab 1996; 16: 650-8.
  • 21 Michel C, Sibomana M, Bol A. et al. Preserving Poisson characteristics of PET data with weighted OS-EM reconstruction. Conf. Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference Toronto: 1998
  • 22 Miller TR, Wallis JW. Clinically important characteristics of maximum-likelihood reconstruction. J Nucl Med 1992; 33: 1678-84.
  • 23 Mullani NA. A phantom for quantitation of partial volume effects in ECT. IEEE Trans Nucl Sci 1989; 36: 983-7.
  • 24 Müller-Gärtner HW, Links JM, Prince JL. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MR-based correction for partial volume effects. J Cereb Blood Flow Metab 1992; 12: 571-83.
  • 25 Mustafovic S, Thielemans K, Hogg D. et al. Object dependency of resolution and convergence rate in OSEM with filtering. Conference Record IEEE NSS&MIC, Nov. 2001 San Diego, CA, USA.:
  • 26 Pietrzyk U, Herholz K, Fink G. et al. An interactive technique for three-dimensional image registration: Validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994; 35: 2011-8.
  • 27 Rousset OG, Ma Y, Evans AC. Correction of partial volume effects in PET: principle and validation. J Nucl Med 1998; 39: 904-11.
  • 28 Rousset OG, Ma Y, Léger GC. et al. Correction for partial volume effects in PET using MRI-based 3-D simulations of individual human brain metabolism. In: Uemura K, Lassen NA, Jones T. et al. (eds). Quantification of brain function tracer kinetics and image analysis in brain PET. Amsterdam: Elsevier Science; 1993: 113-25.
  • 29 Schmidlin P, Doll J. Implementation of iterative reconstruction in positron emission tomography. Prog Clin Biol Res 1991; 363: 59-67.
  • 30 Steams CW, Chosler DA, Brownell GL. Three-dimensional image reconstruction in the Fourier domain. IEEE Trans Nucl Sci 1987; NS-34: 374-8.
  • 31 Strul D, Bendriem B. Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab 1999; 19: 547-59.
  • 32 Videen TO, Perlmutter JS, Mintun MA. et al. Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 1988; 8: 662-70.
  • 33 Wang CX, Snyder WE, Bilbro G. et al. Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Comput Biol Med 1998; 28: 13-24.
  • 34 Wang W, Gindi G. Noise analysis of MAP-EM algorithms for emission tomography. Phys Med Biol 1997; 42: 2215-32.
  • 35 Wells III WM, Grimson WEL, Kikinis R. et al. Adaptive segmentation of MRI data. IEEE Trans Med Imag 1996; 15: 429-42.
  • 36 Yao R, Seidel J, Johnson CA. et al. Performance characteristics of the 3-D OSEM algorithm in the reconstruction of small animal PET images. IEEE Trans Med Imaging 2000; 19: 798-804.