Nervenheilkunde 2017; 36(05): 334-343
DOI: 10.1055/s-0038-1627028
Schmerz
Schattauer GmbH

CGRP als therapeutisches Ziel in der Therapie von primären Kopfschmerzen

CGRP as a possible target in therapy of primary headaches
L. Neeb
1   Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Berlin
,
U. Reuter
1   Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Berlin
,
H. Israel
1   Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingegangen am: 10. November 2016

angenommen am: 01. Dezember 2016

Publikationsdatum:
20. Januar 2018 (online)

Zusammenfassung

Calcitonin gene related peptide (CGRP) übernimmt eine wichtige Rolle in der Pathophysiologie von primären Kopfschmerzerkrankungen in seiner Funktion als potenter Vasodilatator und Neuromodulator. Mehrere Studien konnten eine Beteiligung von CGRP bei der Migräne und beim Clusterkopfschmerz nachweisen, der genaue Wirkmechanismus ist jedoch noch unklar. Die in der Migränetherapie zur Verfügung stehenden Akutmedikamente wie Triptane und die zur Migräneprophylaxe eingesetzten Medikamente sind bei vielen Patienten nicht ausreichend wirksam oder sind durch ihre Nebenwirkungen bzw. Kontraindikationen limitiert. Neue Therapiemöglichkeiten könnten Medikamente sein, die direkt in die durch CGRP vermittelten Mechanismen eingreifen. Derzeit befinden sich in der klinischen Entwicklung zur Akuttherapie der Migräne die CGRP-Rezeptorantagonisten, die sogenannten Gepante. Deren Anwendung könnte jedoch aufgrund von einer eventuellen Lebertoxizität limitiert sein. Die Effektivität der CGRP oder CGRP-Rezeptor blockierenden monoklonalen Antikörper in der Prophylaxe der Migräne wurde in mehreren klinischen Studien untersucht. Diese Substanzen könnten vielversprechende neue Optionen in der Migränetherapie darstellen. In diesem Artikel werden die pathophysiologischen und klinischen Grundlagen einer Beteiligung von CGRP im Mechanismus von primären Kopfschmerzen dargestellt, die akutellen Daten zur Effektivität der genannten Substanzen aufgeführt und mögliche Nebenwirkungen einer Langzeitblockade des CGRP-Systems diskutiert.

Summary

Calcitonin gene related peptide (CGRP) plays a key role in the pathophysiology of primary headache disorders as a potent vasodilatator and neuromodulator. Various studies demonstrated an involvement of CGRP in migraine and in cluster headache. However, its detailed mechanism of action remains unclear. Current drugs used in acute migraine treatment such as triptans and those used for migraine prevention have limited efficacy in a variety of patients or are restricted by their side effects or contraindications. Possible new treatment options include drugs that interact directly with CGRP mediated mechanisms. To date, CGRP receptor antagonists are assessed in the acute treatment of migraine, yet, their application might be restricted due to liver toxicity. The efficacy of CGRP or CGRP receptor blocking monoclonal antibodies in the prophylaxis of migraine was demonstrated in various clinical studies. These substances might represent promising new options in migraine treatment. This review illustrates pathophysiological and clinical principles of the contribution of CGRP in the mechanisms of primary headaches. Latest data regarding the efficacy of these substances will be presented and possible side effects of long-term blockade of the CGRP system will be discussed.

 
  • Literatur

  • 1 Lipton RB. et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 2001; 41 (07) 646-57.
  • 2 global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386 (9995): 743-800.
  • 3 Ray BS, Wolff HG. Experimental studies on headache: pain sensitive structures of the head and their significance in headache. Arch Surg 1940; 01: 813-56.
  • 4 Strassman AM, Levy D. Response properties of dural nociceptors in relation to headache. Journal of Neurophysiology 2006; 95 (03) 1298-306.
  • 5 Goadsby PJ, Lipton RB, Ferrari MD. Migraine – current understanding and treatment. N Engl J Med 2002; 346 (04) 257-70.
  • 6 Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci 2003; 04 (05) 386-98.
  • 7 Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annual review of Physiology 2013; 75: 365-91.
  • 8 Graham JR, Wolff HG. Mechanism of migraine headache and action of ergotamine tartrate. Arch Neurol Psychiatry 1938; 39: 737-63.
  • 9 Levy D, Burstein R. The vascular theory of migraine: leave it or love it?. Ann Neurol 2011; 69 (04) 600-1.
  • 10 Goadsby PJ. The vascular theory of migraine – a great story wrecked by the facts. Brain 2009; 132 (01) 6-7.
  • 11 Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol 2010; 23 (03) 266-74.
  • 12 Edvinsson L. The journey to establish CGRP as a migraine target: A retrospective view. Headache 2015; 55 (09) 1249-55.
  • 13 Amara SG. et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982; 298 (5871): 240-4.
  • 14 Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 1996; 17 (05) 533-85.
  • 15 Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord 2010; 03 (06) 369-78.
  • 16 Edvinsson L. Blockade of CGRP receptors in the intracranial vasculature: a new target in the treatment of headache. Cephalalgia 2004; 24 (08) 611-22.
  • 17 Poyner DR. et al. International Union of Pharmacology. XXXII. The mammalian calcitonin generelated peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002; 54 (02) 233-46.
  • 18 Russell FA. et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94 (04) 1099-142.
  • 19 Edvinsson L. et al. Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136 (03) 319-33.
  • 20 Ma QP, Hill R, Sirinathsinghji D. Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats. Eur J Neuro sci 2001; 13 (11) 2099-104.
  • 21 Hou M. et al. 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 2001; 909(1–2): 112-20.
  • 22 Farkkila M. et al. Efficacy and tolerability of lasmiditan, an oral 5-HT(1F) receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallel-group, dose-ranging study. Lancet Neurol 2012; 11 (05) 405-13.
  • 23 Pietrobon D. Migraine: new molecular mechanisms. Neuroscientist 2005; 01 (04) 373-386.
  • 24 Messlinger K, Dux M. Neue Therapieoptionen bei Migräne. Nervenheilkunde 2016; 35(7–8): 492-500.
  • 25 Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988; 23 (02) 193-6.
  • 26 Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993; 33 (01) 48-56.
  • 27 Tfelt-Hansen P, Le H. Calcitonin gene-related peptide in blood: is it increased in the external jugular vein during migraine and cluster headache? A review. J Headache Pain 2009; 10 (03) 137-43.
  • 28 Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 1994; 117 (03) 427-34.
  • 29 Ashina M. et al. Plasma levels of calcitonin gene-related peptide in chronic tension-type headache. Neurology 2000; 55 (09) 1335-40.
  • 30 Tvedskov JF. et al. No increase of calcitonin generelated peptide in jugular blood during migraine. Ann Neurol 2005; 58 (04) 561-8.
  • 31 Lassen LH. et al. CGRP may play a causative role in migraine. Cephalalgia 2002; 22 (01) 54-61.
  • 32 Hansen JM. et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 2010; 30 (10) 1179-86.
  • 33 Asghar MS. et al. Dilation by CGRP of middle meningeal artery and reversal by sumatriptan in normal volunteers. Neurology 2010; 75 (17) 1520-6.
  • 34 Lassen LH. et al. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain 2008; 09 (03) 151-7.
  • 35 Ashina M. et al. Evidence for increased plasma levels of calcitonin gene-related peptide in migraine outside of attacks. Pain 2000; 86(1–2): 133-8.
  • 36 Neeb L. et al. Corticosteroids alter CGRP and melatonin release in cluster headache episodes. Cephalalgia 2015; 35 (04) 317-26.
  • 37 Cernuda-Morollon E. et al. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology 2013; 81 (14) 1191-6.
  • 38 Cernuda-Morollon E. et al. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain 2015; 156 (05) 820-4.
  • 39 Hadjikhani N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. PNAS 2001; 98 (08) 4687-92.
  • 40 Bolay H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Medicine 2002; 08 (02) 136-42.
  • 41 Piper RD. et al. Cortical spreading depression does not result in the release of calcitonin gene-related peptide into the external jugular vein relevance to human migraine. Cephalalgia 1993; 13 (03) 180-3.
  • 42 Reuter U. et al. Perivascular nerves contribute to cortical spreading depression-associated hyperemia in rats. The American Journal of Physiology 1998; 274(6 Pt 2): H1979-87.
  • 43 Tozzi A. et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. PNAS 2012; 109 (46) 18985-90.
  • 44 Hostetler ED. et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. The Journal of Pharmacology and Experimental Therapeutics 2013; 347 (02) 478-86.
  • 45 Ferrari MD. et al. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 2002; 22 (08) 633-58.
  • 46 Cameron C. et al. Triptans in the acute treatment of migraine: A systematic review and network metaanalysis. Headache 2015; 55 (Suppl. 04) 221-35.
  • 47 Lipton RB. et al. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology 2015; 84 (07) 688-95.
  • 48 Gallagher RM, Kunkel R. Migraine medication attributes important for patient compliance: concerns about side effects may delay treatment. Headache 2003; 43 (01) 36-43.
  • 49 Maassen AVanDenBrink. et al. Human isolated coronary artery contraction to sumatriptan: a post hoc analysis. Cephalalgia 1999; 19 (07) 651-4.
  • 50 MacIntyre PD. et al. Effect of subcutaneous sumatriptan, a selective 5HT1 agonist, on the systemic, pulmonary, and coronary circulation. Circulation 1993; 87 (02) 401-5.
  • 51 Tepper SJ, Millson D. Safety profile of the triptans. Expert Opin Drug Saf 2003; 02 (02) 123-32.
  • 52 Diener HC. et al. Topiramate reduces headache days in chronic migraine: a randomized, doubleblind, placebo-controlled study. Cephalalgia 2007; 27 (07) 814-23.
  • 53 Dodick DW. et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache 2010; 50 (06) 921-36.
  • 54 Linde M, Mulleners WM, Chronicle EP, McCrory DC. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev 2013; (06) CD010611.
  • 55 Linde M, Mulleners WM, Chronicle EP, McCrory DC. Topiramate for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev 2013; (06) CD010610.
  • 56 Irimia P. et al. Refractory migraine in a headache clinic population. BMC Neurol 2011; 11: 94.
  • 57 Gracia-Naya M. et al. [Predisposing factors affecting drop-out rates in preventive treatment in a series of patients with migraine]. Rev Neurol 2011; 53 (04) 201-8.
  • 58 Luykx J. et al. Are migraineurs at increased risk of adverse drug responses? A meta-analytic comparison of topiramate-related adverse drug reactions in epilepsy and migraine. Clin Pharmacol Ther 2009; 85 (03) 283-8.
  • 59 Hepp Z. et al. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia 2015; 35 (06) 478-88.
  • 60 Olesen J. et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 2004; 350 (11) 1104-10.
  • 61 Petersen KA. et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia 2005; 25 (02) 139-47.
  • 62 Karsan N, Goadsby PJ. CGRP mechanism antagonists and migraine management. Curr Neurol Neurosci Rep 2015; 15 (05) 25.
  • 63 Ho TW. et al. Antimigraine efficacy of telcagepant based on patient’s historical triptan response. Headache 2011; 51 (01) 64-72.
  • 64 Petersen KA. et al. BIBN4096BS antagonizes human alpha-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin Pharmacol Ther 2005; 77 (03) 202-13.
  • 65 Chan KY. et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. The Journal of Pharmacology and Experimental Therapeutics 2010; 334 (03) 746-52.
  • 66 Lynch JJ. et al. Effects of the prototype serotonin 5-HT(1B/1D) receptor agonist sumatriptan and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8–37) on myocardial reactive hyperemic response in conscious dogs. Eur J Pharmacol 2009; 623 (1–3|): 96-102.
  • 67 Chaitman BR. et al. A randomized, placebo-controlled study of the effects of telcagepant on exercise time in patients with stable angina. Clin Pharmacol Ther 2012; 91 (03) 459-66.
  • 68 Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 2013; 53 (08) 1230-44.
  • 69 Connor KM. et al. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology 2009; 73 (12) 970-7.
  • 70 Ho TW. et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 2014; 83 (11) 958-66.
  • 71 Ho TW. et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for prevention of headache in women with perimenstrual migraine. Cephalalgia 2016; 36 (02) 148-61.
  • 72 Voss T. et al. A phase IIb randomized, doubleblind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia 2016; 36 (09) 887-98.
  • 73 Dodick DW. et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 2014; 13 (09) 885-92.
  • 74 Dodick DW. et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol 2014; 13 (11) 1100-7.
  • 75 Dodick D. et al. Randomized, double-blind, placebo-controlled trial of ALD403, an anti-CGRP anti-body in the prevention of chronic migraine. American Headache Society 58th Annual Scientific Meeting. 2016
  • 76 Bigal ME. et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14 (11) 1081-90.
  • 77 Bigal ME. et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, doubleblind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14 (11) 1091-100.
  • 78 Bigal ME. et al. TEV-48125 for the preventive treatment of chronic migraine: Efficacy at early time points. Neurology 2016; 87 (01) 41-8.
  • 79 Sun H. et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15 (04) 382-90.
  • 80 Sun H. et al. Randomised, double-blind, phase-2 study and 52-Week interim results of an openlabel extension to evaluate AMG334 for the prevention of episodic migraine. Eur J Neurol 2016; (23 (Suppl. 1)): 21-110.
  • 81 Tepper S. et al. Phase 2, randomized, double-blind, placebo-controlled study to evaluate the effiacy and safety of erenumab (AMG 334) in chronic migraine prevention. EHMTIC. 2016
  • 82 Tfelt-Hansen PC. PACAP-induced migraine: a possible CNS effect?. Brain 2014; 137(Pt 11): e304.
  • 83 Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood-nerve and bloodbrain barriers. PNAS 1994; 91 (12) 5705-9.
  • 84 Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8–37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol 2007; 150 (05) 633-40.
  • 85 Eftekhari S. et al. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 2016; 524 (01) 90-118.
  • 86 Eftekhari S. et al. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res 2015; 1600: 93-109.
  • 87 Edvinsson L, Warfvinge K. CGRP receptor antagonism and migraine therapy. Curr Protein Pept Sci 2013; 14 (05) 386-92.
  • 88 Vermeersch S. et al. Translational pharmacodynamics of calcitonin gene-related peptide monoclonal antibody LY2951742 in a capsaicin-induced dermal blood flow model. The Journal of Pharmacology and Experimental Therapeutics 2015; 354 (03) 350-7.
  • 89 Hou Q. et al. Keratinocyte expression of calcitonin gene-related peptide beta: implications for neuropathic and inflammatory pain mechanisms. Pain 2011; 152 (09) 2036-51.
  • 90 Cai WQ. et al. Endothelium of human umbilical blood vessels: ultrastructural immunolocalization of neuropeptides. Journal of Vascular Research 1993; 30 (06) 348-55.
  • 91 Gupta P. et al. Effects of menopausal status on circulating calcitonin gene-related peptide and adipokines: implications for insulin resistance and cardiovascular risks. Climacteric 2008; 11 (05) 364-72.
  • 92 Bracci-Laudiero L. et al. NGF modulates CGRP synthesis in human B-lymphocytes: a possible anti-inflammatory action of NGF?. Journal of Neuroimmunology 2002; 123(1–2): 58-65.
  • 93 Linscheid P. et al. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Critical Care Medicine 2004; 32 (08) 1715-21.
  • 94 Wang H. et al. Production and secretion of calcitonin gene-related peptide from human lymphocytes. Journal of Neuroimmunology 2002; 130(1–2): 155-62.
  • 95 MaassenVanDenBrink A. et al. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci 2016; 37 (09) 779-88.
  • 96 Zeller J. et al. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. British Journal of Pharmacology 2008; 155 (07) 1093-103.
  • 97 Gangula PR. et al. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice. Hypertension 2000; 35(1 Pt 2): 470-5.
  • 98 Smillie SJ. et al. An ongoing role of alpha-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension 2014; 63 (05) 1056-62.
  • 99 Juul R. et al. Calcitonin gene-related peptide-LI in subarachnoid haemorrhage in man. Signs of activation of the trigemino-cerebrovascular system? British Journal of Neurosurgery 1990; 04 (03) 171-9.
  • 100 Schebesch KM. et al. Calcitonin-gene related peptide and cerebral vasospasm. Journal of Clinical Neuroscience 2013; 20 (04) 584-6.
  • 101 Zhang JY. et al. Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression. European Journal of Pharmacology 2011; 671(1–3): 61-9.
  • 102 Liu Z. et al. Calcitonin gene-related peptide prevents blood-brain barrier injury and brain edema induced by focal cerebral ischemia reperfusion. Regulatory Peptides 2011; 171(1–3): 19-25.
  • 103 Chai W. et al. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. European Journal of Pharmacology 2006; 531(1–3): 246-53.
  • 104 Li J. et al. Alpha-calcitonin gene-related peptide is protective against pressure overload-induced heart failure. Regulatory Peptides 2013; 185: 20-8.
  • 105 Li FJ. et al. Calcitonin gene-related peptide is a promising marker in ulcerative colitis. Digestive Diseases and Sciences 2013; 58 (03) 686-93.
  • 106 Reinshagen M. et al. Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. Journal of Pharmacology and Experimental Therapeutics 1998; 286 (02) 657-61.
  • 107 Ohno T. et al. Roles of calcitonin gene-related peptide in maintenance of gastric mucosal integrity and in enhancement of ulcer healing and angiogenesis. Gastroenterology 2008; 134 (01) 215-25.
  • 108 Gomes RN. et al. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock 2005; 24 (06) 590-4.