Methods Inf Med 2013; 52(04): 277-278
DOI: 10.1055/s-0038-1627060
Editorial
Schattauer GmbH

On Time-frequency Techniques in Biomedical Signal Analysis

S. Cerutti
1   DEIB – Department of Electronics, Information and Bioengineering, Politecnico of Milano, Milan, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
20 January 2018 (online)

 

 
  • References

  • 1 Wacker M, Witte H. Time-frequency techniques in biomedical signal analysis: A tutorial review of similarities and differences. Methods Inf Med 2013; 52 (04) 279-296.
  • 2 Choi HI, Williams WJ, Zaveri H. Analysis of event related potentials: time-frequency energy distribution. Biomed Sci Instrum 1987; 23: 251-258.
  • 3 Boashash B. Note on the use of the Wigner distribution for time-frequency signal analysis. IEEE Trans. Acoustics, Speech, Signal Processing. September 1988; 36 (09) 1518-1521.
  • 4 Cohen L. Time-frequency distributions-a review. Proceedings of the IEEE 1989; 77 (07) 941-981.
  • 5 Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine 1991; 8 (04) 14-38.
  • 6 Hlawatsch F, Boudreaux-Bartels GF. Linear and quadratic time-frequency signal representations. IEEE Signal Processing Magazine 1992; 9 (02) 21-67.
  • 7 Souza Neto EP, Custaud MA, Cejka JC, Abry P, Frutoso J, Gharib C, Flandrin P. Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf Med 2004; 43 (01) 60-65.
  • 8 Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time-series analysis. Proceedings of the Royal Society of London 1998; 454: 903-995.
  • 9 Huang NE, Wu MC, Long SR, Shen SSP, Qu WD, Gloersen P, Fan KL. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London Series A - Mathematical, Physical and Engineering Science 2003; 459 2037 2317-2345.
  • 10 Baumgartner C, Blinowska KJ, Cichocki A, Dickhaus H, Durka PJ, McClintock PVE, Pfurtscheller G, Stefanovska A, Tong S. Discussion of “Time-frequency techniques in biomedical signal analysis: A tutorial review of similarities and differences”. Methods Inf Med 2013; 52 (04) 297-307.
  • 11 Cong F, Phan AH, Zhao Q, Huttunen-Scott T, Kaartinen J, Ristaniemi T, Lyytinen H, Cichocki A. Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from EEG collected by low-density array. Int J Neural Syst 2012; 22 (06) 1250025
  • 12 Cerutti S, Hoyer D, Voss A. Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation. Philos Trans A Math Phys Eng Sci 2009; 367 1892 1337-1358.
  • 13 Viceconti M, Clapworthy G, Testi D, Taddei F, McFarlane N. Multimodal fusion of biomedical data at different temporal and dimensional scales. Comput Methods Programs Biomed 2011; 102 (03) 227-237.
  • 14 Rudy Y. From genome to physiome: integrative models of cardiac excitation. Ann Biomed Eng 2000; 28 (08) 945-950.
  • 15 Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M. Computational physiology and the Physiome Project. Exp Physiol 2004; 89 (01) 1-26.
  • 16 Cerutti S, Marchesi C. eds Advanced Methods of Biomedical Signal Processing. IEEE-Wiley; 2011.
  • 17 Friston K, Moran R, Seth AK. Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 2013; 23 (02) 172-178.
  • 18 Tana MG, Bianchi AM, Sclocco R, Franchin T, Cerutti S, Leal A. Parcel-based connectivity analysis of fMRI data for the study of epileptic seizure propagation. Brain Topogr 2012; 25 (04) 345-361.