Nervenheilkunde 2012; 31(09): 587-598
DOI: 10.1055/s-0038-1628284
Neuroonkologie
Schattauer GmbH

Hirneigene Tumoren

Brain tumors
M. Renovanz
1   Neurochirurgische Klinik, Klinikum Stuttgart – Katharinenhospital
,
P. Kohlhof
1   Neurochirurgische Klinik, Klinikum Stuttgart – Katharinenhospital
,
M. Nadji-Ohl
1   Neurochirurgische Klinik, Klinikum Stuttgart – Katharinenhospital
,
N. Hopf
1   Neurochirurgische Klinik, Klinikum Stuttgart – Katharinenhospital
› Author Affiliations
Further Information

Publication History

eingegangen am: 19 April 2012

angenommen am: 03 May 2012

Publication Date:
23 January 2018 (online)

Zusammenfassung

Mit einer Inzidenz von etwa 20/100 000 pro Jahr stellen hirneigene Tumoren eine seltene und in vielen Fällen nicht heilbare Erkrankung dar. Die häufigsten hirneigenen Tumoren bei Erwachsenen neben Meningeomen sind Gliome (30% aller Hirntumoren), mehr als die Hälfte der Gliome sind Glioblastome. Auch vermeintlich niedermaligne Hirntumoren können infiltrierend wachsen, eine kurative Behandlung wird dadurch unmöglich. Nachdem sich das Stammzellkonzept bezüglich Tumorentstehung und -resistenz durchgesetzt hat, konnte gezeigt werden, dass genetische Veränderungen an der Entstehung und Progression von Hirntumoren beteiligt sind. Von klinischer Relevanz sind drei molekulare Marker: 1p-/19q-Co-Deletion, Methylierung von MGMT und Mutation von IDH-1 und -2. Die Operation bildet neben der Diagnosesicherung den ersten Teil der Therapie, der sich je nach Entität noch eine weitere Stahlen- und/ oder Chemotherapie anschließen kann. In den vergangenen Jahren konnte gezeigt werden, dass das Resektionsausmaß ein signifikanter Faktor für die weitere Prognose darstellt. Die Therapie von Hirntumorpatienten sollte an neurochirurgischen Zentren mit genügend Expertise erfolgen, da der technische Aufwand hoch ist und nicht in allen Kliniken zur Verfügung steht.

Summary

Brain tumors occur with an incidence of 20/100 000 per year. It is a rare and in most of the cases incurable disease. Meningiomas and gliomas represent 30% of all brain tumors. More than the 50% of the gliomas are glioblastomas and low grade gliomas undergo often a transformation to high grade tumors. Recently, the stem cell concept has been accepted as the most likely pathophysiological mechanism in malignant brain tumors with resulting implications for posttreatment glioma recurrence. On the other hand, it has been shown that molecular markers like 1p/19q, mutations in IDH-1 and -2 MGMT are involved in development and progression of brain tumors. Tumor resection or biopsy aiming a diagnostic confirmation is the first step in management and therapy, followed by further individual radio- and/or chemotherapy depending on the entity of the tumor. Recent findings show that extent of resection is a significant factor for the prognosis. Today, treatment and follow-up of primary brain tumors should be performed in specialized neurosurgical centers with sufficient expertise in regard of the personal and technical effort.

 
  • Literatur

  • 1 Schlegel, Weller, Westphal.. Neuroonkologische Therapie. Stuttgart: Kohlhammer Verlag; 2009
  • 2 Lapidot T, Sirard C, Vormoor J. et al. A cell initiating human acute myeloid lrukaemia after transplantation into SCID mice. Nature 1994; 367: 645-58.
  • 3 Reynold BA, Weiss S. Clonal and population analysis demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem sell. Dev Biol 1996; 175: 1-13.
  • 4 Singh SK. et al. Identification of brain tumor initiating cells. Nature 2004; 432: 396-401.
  • 5 Clement V. et al. Marker independent identification of glioma-initiating cells. Nat Meth 2010; 7: 224-8.
  • 6 Tabatabai G, Weller M. Glioblastoma stem cells. Cell Tissue Res 2011; 343 (Suppl. 03) 459-65.
  • 7 Dhermain FG. et al. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010; 9 (Suppl. 09) 906-20.
  • 8 Grosu AL. et al. An Interindividual Comparison of O-(2-[(18)F]Fluoroethyl)-L-Tyrosine (FET)- and L-[Methyl-(11)C]Methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011 May 11, E-Pub ahead of print
  • 9 Kunz M. et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 2011; 13 (Suppl. 03) 307-16.
  • 10 Kreth FW. et al. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours – a prospective study. Acta Neurochir (Wien) 2001; 143 (Suppl. 06) 539-45.
  • 11 Louis DN. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114 (Suppl. 02) 97-109.
  • 12 Oken MM. et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982; 5 (Suppl. 06) 649-55.
  • 13 Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol 2003; 62 (Suppl. 02) 111-26.
  • 14 Wick W. et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27 (35) 5874-80.
  • 15 Hegi ME. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10) 997-1003.
  • 16 Weller M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nat Rev Neurol 2010; 6 (Suppl. 01) 39-51.
  • 17 Hartmann C. et al. Molecular markers in low-grade gliomas: predictive or prognostic?. Clin Cancer Res 2011; 17 (13) 4588-99.
  • 18 von Deimling A, Korshunov A, Hartmann C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 2011; 21 (Suppl. 01) 74-87.
  • 19 Reardon DA. et al. Cilengitide: an RGD pentapep-tide 3 and 5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol 2011; 7 (Suppl. 03) 339-54.
  • 20 Glas M. et al. Procarbazine and CCNU as initial treatment in gliomatosis cerebri. Oncology 2008; 75 3–4 182-5.
  • 21 Rieken S. et al. Outcome and prognostic factors of desmoplastic medulloblastoma treated within a multidisciplinary treatment concept. BMC Cancer 2010; 10: 450.
  • 22 Wilne S. et al. Presentation of childhood CNS tumours; a systematic review and meta-analysis. Lancet Oncol 2007; 8 (Suppl. 08) 685-95.
  • 23 Gnekow AK. et al. Low-grade chiasmatic-hypothalamic glioma-carboplatin and vincristin chemotherapy effectively defers radiotherapy within a comprehensive treatment strategy – report from the multicenter treatment study for children and adolescents with a low-grade glioma – HIT-LGG 1996 – of the Society of Pediatric Oncology and Hematology (GPOH) 1996. Klin Padiatr 2004; 216 (Suppl. 06) 331-42.
  • 24 Timmermann B, Kortmann RD, Kuhl J. et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the prospective German brain tumors trials HIT 88/89 and 91. Int J Radiat Oncol Biol Phys 2009; 46 (Suppl. 02) 28-95.
  • 25 Bourdeaut F. et al. Medulloblastomas: update on a heterogeneous disease. Curr Opin Oncol. 2011 Sep 1, E-Pub ahead of print
  • 26 Kool M, Koster J, Bunt J. et al. Integrated genomics identifies five medulloblastome subtypes with distinct genetic profiles, pathway signatures and clinico-pathological features. PLoS One 2008; 3 (Suppl. 08) e3088.
  • 27 Von Hoff K. et al. Long-term coutcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomized multi-centre trial HIT‛91. Eur J Cancer 2009; 45 (Suppl. 07) 1209-17.
  • 28 Frühwald MC, Rutkowski S. Tumors of the central nervous system in children and adolescents. Dtsch Arztebl Int 2011; 108 (22) 390-7.
  • 29 McGirt MJ. et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 2008; 63 (Suppl. 04) 700-7.
  • 30 Picht T. et al. Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 2009; 65 (Suppl. 06) 93-8.
  • 31 Woydt M. et al. Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir (Wien) 1996; 138 (12) 1391-8.
  • 32 Gerganov VM. et al. Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J Clin Neurosci 2011; 18 (Suppl. 05) 669-73.
  • 33 Senft C. et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011 Aug 23, E-Pub ahead of print
  • 34 Stummer W. et al. Extend of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 2008; 62 (Suppl. 03) 564-76.
  • 35 Sanai N, Berger MS. Extent of resection influences outcomes for patients with gliomas. Rev Neurol (Paris). 2011 Sep 6; E-Pub ahead of print