Subscribe to RSS
DOI: 10.1055/s-0038-1628523
Bildgebung bei Demenz
Imaging in dementiaPublication History
eingegangen am:
08 January 2013
angenommen am:
04 March 2013
Publication Date:
24 January 2018 (online)
Zusammenfassung
Mit der zunehmenden Überalterung der Gesellschaft wird die Demenz zukünftig auch den Radiologen “beschäftigen”. Hauptindikation für die Bildgebung ist der Ausschluss einer unerwarteten und behandelbaren Ursache. Hierbei weisen seltene Demenzerkrankungen pathognomonische MRT-Muster auf und sollten zuverlässig erkannt werden. In der Diagnostik ist der Morbus Alzheimer mit 60% die häufigste Demenzerkrankung und das MRT neben Liquor und PET bzw. SPECT ein Biomarker. Eine auf senkrecht zur C.a.C.p.-Ebene quantifizierte temporomesiale Atrophie ist bei nicht symptomatischen Patienten prädiktiv für das rasche Auftreten von Symptomen. Für die Erfassung geringer Volumenveränderungen im Verlauf ist die visuelle Analyse unzureichend; voxelbasierte Analyseverfahren sollten herangezogen werden.
Summary
With the ageing of our population dementia will become a relevant topic for radiologist. To date, the key clinical indication for imaging studies is the exclusion of unexpected but treatable conditions. Some types of dementia have characteristic patterns on MR images, which should be readily recognized by the radiologist. MRI together with CSF, PET and SPECT is considered a biomarker in the diagnosis of Alzheimer’s disease, the most frequent dementia affecting approximately 60% of patients with dementia. Atrophy of the mesial temporal lobe quantified on images acquired perpendicular to a plane defined by the anterior and posterior commissure predicts the rapid development of symptoms in otherwise asymptomatic patients. However, the detection of small changes in brain volume during follow-up imaging requires a voxel based analysis.
-
Literatur
- 1 O’Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol 2007; 80: S71-77.
- 2 Westman E. et al. Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLOS 2011; 06 (07) e22506.
- 3 Clarfield AM. The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med 2003; 163: 2219-29.
- 4 Good CD. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001; 14 (1 Pt 1): 21-36.
- 5 Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie 1907; 64: 146-8.
- 6 McKhann G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939-44.
- 7 WHO. (ed.) Internationale Klassifikation psychischer Störungen. 6. Aufl. In: H. Dilling WM, M.H. Schmidt unter Mitarbeit von E. SchulteMarkwort. (ed.). ICD-10 Kapitel V (F) Klinischdiagnostische Leitlinien. Basel: Hans Huber; 2008
- 8 Braak H, Braak E. Staging of Alzheimer’s disease-related neuro-fibrillary changes. Neurobiol Aging 1995; 16 (03) 271-8.
- 9 Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol 2007; 80 (02) 160-7.
- 10 Barthel H. et al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10 (05) 424-35.
- 11 Dubois B. et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol 2007; 06: 734-46.
- 12 Dubois B. et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010; 09 (11) 1118-27.
- 13 S3-Langversion der Behandlungsleitlinie Demenz der DGN und DGPPN vom 23.11.2009. www.dgn.org/images/stories/dgn/pdf/s3_leitlinie_demenzen.pdf
- 14 Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – metaanalysis of 41 robust inception cohort studies. Acta Psychiatr Scand 2009; 119: 252-65.
- 15 Matthews FE. et al. Two-year progression from mild cognitive impairment to dementia: to what extent do different definitions agree?. J Am Geriatr Soc 2008; 56: 1424-33.
- 16 Frisoni GB. et al. Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J Neurol Neurosurg Psychiatry 2003; 74 (10) 1371-81.
- 17 Scheltens P. et al. Atrophy of medial temporal lobes on MRI in ‘‘probable’’ Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-72.
- 18 Duara R. et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008; 71 (24) 1986-92.
- 19 Jack CR. et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008; 27: 685-91.
- 20 Karas G. et al. Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 2007; 49 (12) 967-76.
- 21 Urs R. et al. Visual rating system for assessing magnetic resonance images: a tool in the diagnosis of mild cognitive impairment and Alzheimer disease. J Comput Assist Tomogr 2009; 33 (01) 73-8.
- 22 Thompson PM, Apostolova LG. Computational anatomical methods as applied to ageing and dementia. Br J Radiol 2007; 80 (02) 78-91.
- 23 Barnes J. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging 2009; 30 (11) 1711-23.
- 24 McEvoy LK. et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 2009; 251 (01) 195-205.
- 25 McEvoy LK. et al. Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 2011; 259 (03) 834-43.
- 26 Klöppel S. et al. Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain 2008; 131 (11) 2969-74.
- 27 Klöppel S. et al. Automatic classification of MR scans in Alzheimer’s disease. Brain 2008; 131 (03) 681-9.
- 28 Desikan RS. et al. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 2009; 132 (Pt 8): 2048-57.
- 29 Vemuri P. et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future clinical change. Neurology 2009; 73: 294-301.
- 30 Heister D. et al. Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology 2011; 77 (17) 1619-28.
- 31 Shattuck DW. et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008; 39: 1064-1080.
- 32 Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839-851.
- 33 Huppertz HJ. et al. Intra and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. NeuroImage 2010; 49 (03) 2216-24.
- 34 Frings L. et al. Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry. Hum Brain Mapp 2012; 33 (07) 1526-35.
- 35 Friston KJ. et al. Functional connectivity: the principal-component analysis of large data sets. J Cereb Blood Flow Metab 1993; 13: 5-14.
- 36 De Luca M. et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 2006; 29 (04) 1359-67.
- 37 Smith SM. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487-505.
- 38 Haller S. et al. Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of Diffusion Tensor Imaging Data. J Alzheimers Dis 2010; 22: 315-27.
- 39 Haller S, Lovblad KO, Giannakopoulos P. Principles of Classification Analyses in Mild Cognitive Impairment (MCI) and Alzheimer Disease. J Alzheimers Dis 2011; 26 (Suppl. 03) 389-94.
- 40 Haller S. et al. Individual detection of Parkinson disease patients using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol 2012; 33: 2123-8.
- 41 Klunk WE. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 2004; 55: 306-19.
- 42 Wong DF. et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 2010; 51: 913-20.
- 43 Vandenberghe R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010; 68: 319-29.
- 44 Jack CR. et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 2010; 133: 3336-48.
- 45 Chen Y. et al. Voxellevel comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011; 77 (22) 1977-85.
- 46 Hu WT. et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75 (10) 881-8.
- 47 Adalsteinsson E. et al. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 2000; 355 (9216): 1696-1697.
- 48 Jessen F. et al. Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 2006; 67 (03) 528-30.
- 49 Hachinski VC. et al. Cerebral blood flow in dementia. Arch Neurol 1975; 32 (09) 632-7.
- 50 Roman GC. et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDSAIREN International Workshop [see comments]. Neurology 1993; 43: 250-60.
- 51 Yip AG. et al. APOE, vascular pathology, and the AD brain. Neurology 2005; 65 (02) 259-65.
- 52 Thal DR. et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58 (12) 1791-800.
- 53 Ghebremedhin E. et al. Gender and age modify the association between APOE and AD-related neuropathology. Neurology 2001; 56 (12) 1696-701.
- 54 Attems J. et al. Review: sporadic cerebral amyloid angiopathy. Neuropathology and Applied Neurobiology 2011; 37: 75-93.
- 55 Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player?. Brain 2011; 134: 335-44.
- 56 Haller S. et al. Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 2010; 257: 764-73.
- 57 Linn J. et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74 (17) 1346-50.
- 58 Dhollander et al. In vivo amyloid imaging in cortical superficial siderosis. J Neurol Neurosurg Psychiatry 2011; 82: 469-71.
- 59 McKhann GM. et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease [see comment]. Arch Neurol 2001; 58: 1803-9.
- 60 Gorno-Tempini ML. et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004; 55: 335-46.
- 61 Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010; 09 (10) 995-1007.
- 62 Lu Y, Ferris J, Gao FB. Frontotemporal dementia and amyotrophic lateral sclerosis associated disease protein TDP-43 dendritic branching. Mol Brain 2009; 02: 30.
- 63 McKeith IG. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65: 1863-72.
- 64 Flanagan EP. et al. Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc 2010; 85: 881-97.
- 65 Hattingen E. et al. Planar brain surface reformations for localization of cortical brain lesions. Zbl Neurochir 2004; 65: 75-80.