Nervenheilkunde 2010; 29(05): 291-296
DOI: 10.1055/s-0038-1628763
125. Wanderversammlung
Schattauer GmbH

Neurobiologische Grundlagen der Schizophrenie

Synaptopathie, gestörte Neurogenese oder beides?Neurobiological basis of schizophreniaSynaptopathy, disturbed neurogenesis, or both?
A. Schmitt
1   Abteilung für Psychiatrie und Psychotherapie, Zentrum Psychosoziale Medizin, Georg-August-Universität Göttingen
,
O. Gruber
1   Abteilung für Psychiatrie und Psychotherapie, Zentrum Psychosoziale Medizin, Georg-August-Universität Göttingen
,
P. Falkai
1   Abteilung für Psychiatrie und Psychotherapie, Zentrum Psychosoziale Medizin, Georg-August-Universität Göttingen
› Author Affiliations
Further Information

Publication History

Eingegangen am: 04 January 2010

angenommen am: 17 January 2010

Publication Date:
24 January 2018 (online)

Zusammenfassung

Schizophrenie ist eine neurobiologische Erkrankung mit Beteiligung mehrerer neuronaler Netzwerke. Dabei spielt sowohl eine Störung der Makrokonnektivität zwischen den beteiligten Regionen als auch eine Störung der Mikrokonnektivität, der synaptischen Funktion, eine Rolle. In mehreren Gehirnregionen wurde bei unveränderter Neuronenzahl eine verminderte Anzahl an myelinbildenden Oligodendrozyten sowie der Expression von myelinassoziierten Genen gefunden. Zusätzlich sind synaptische Gene und Proteine verändert, was für eine Störung der synaptischen Plastizität spricht.Auch die Proliferation neuronaler Stammzellen (Neurogenese), die beim Erwachsenen stattfindet, war bei schizophrenen Patienten im Gyrus dentatus vermindert. Manche atypischen Antipsychotika beeinflussen die Neurogenese und die Expression synaptischer Gene, die für die kognitive Funktion wichtig sind. Aber auch körperliches Training verbesserte in einer neuen Studie bei schizophrenen Patienten das Hippocampusvolumen sowie die neuronale Funktion. Zukünftige Therapien der Schizophrenie sollten auf Verbesserungen der neuronalen Plastizität hin untersucht werden, um neue kausale Therapiestrategien zu entwickeln.

Summary

Schizophrenia is a neurobiological disease with disturbed neuronal networks. The pathophysiology of the disease reveals disturbances of the macroconnectivity between affected regions as well as altered microconnectivity and synaptic function. In several brain regions, unchanged numbers of neurons, but decreased numbers of oligodendrocytes, which play an important role in myelination and propagation of nerve impulses, and decreased expression of myelin-related genes have been detected. Additionally, synaptic genes and proteins have been shown to be dysregulated, implicating disturbed synaptic plasticity. Moreover, proliferation of neuronal stem cells (neurogenesis) has been reported to be decreased in the dentate gyrus of schizophrenia patients. Some atypical antipsychotics are known to influence neurogenesis and expression of synaptic genes, which all play a role in cognition. In a recent study, physical exercise improved hippocampus volumes and neuronal function in schizophrenia patients. Further investigations of new therapies on neuronal plasticity are warranted to improve causative therapeutic strategies in schizophrenia.

 
  • Literatur

  • 1 Aberg K. et al. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet Neuropsychiatr Genet 2006; 141B (01) 84-90.
  • 2 Adamcio B. et al. Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol 2008; 09: 6-37.
  • 3 Benes FM. et al. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991; 48 (11) 996-1001.
  • 4 Brophy P, Shen K. Neuronal and glial cell biology. Current Opinion in Neurobiology 2009; 19: 459-60.
  • 5 Byne W. et al. Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophr Res 2006; 85 (1–3): 245-53.
  • 6 Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993; 56 (02) 337-44.
  • 7 Cannon TD. et al. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol 1999; 11: 467-85.
  • 8 Cannon TD. et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 2002; 59: 35-41.
  • 9 Carlsson A, Hansson LO, Waters N, Carlsson ML. Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci 1997; 61 (02) 75-94.
  • 10 Cheung V. et al. A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol Med 2008; 38 (06) 877-85.
  • 11 Conover JC, Allen RL. The subventricular zone: new molecular and cellular developments. Cell Mol Life Sci 2002; 59 (12) 2128-35.
  • 12 Dalman C. et al. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study. Br J Psychiatry 2001; 179: 403-8.
  • 13 Davis KL. et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60 (05) 443-56.
  • 14 Deicken RF, Zhou L, Schuff N, Weiner MW. Proton magnetic resonance spectroscopy of the anterior cingulate region in schizophrenia. Schizophr Res 1997; 27 (01) 65-71.
  • 15 Diekhof EK, Gruber O. Die funktionelle Organisation des Stirnhirns: Grundlegende Erkenntnisse aus den Systemischen Neurowissenschaften. Fortschritte der Neurologie – Psychiatrie 2008; 76 (01) 49-57.
  • 16 Dracheva S. et al. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 2006; 21 (03) 531-40.
  • 17 Dwork AJ, Mencevski B, Rosoklija G. White matter and cognitive function in schizophrenia. In J Neuropsychopharmacol 2007; 10 (04) 513-36.
  • 18 Eastwood SL, Burnet PW, Harrison PJ. Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 2000; 36 (06) 167-77.
  • 19 Eastwood SL, Harrison PJ. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 05 (04) 425-32.
  • 20 Eriksson PS. et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 04 (11) 1313-7.
  • 21 Falls DL. Neuregulins: functions, forms, and signaling strategies. Experimental cell research 2003; 284: 14-30.
  • 22 Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin 2009; 35 (03) 528-48.
  • 23 Farrow TF. et al. Diagnosis-related regional grey matter loss over two years in first episode schizophrenia and bipolar disorder. Biol Psychiatry 2005; 58 (09) 713-23.
  • 24 Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54 (07) 660-9.
  • 25 Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46 (11) 1472-9.
  • 26 Gruber O, Gruber E, Falkai P. Neural correlates of working memory deficits in schizophrenic patients: ways to establish neurocognitive endophenotypes of psychiatric disorders. Radiologe 2005; 45: 153-60.
  • 27 Gruber O, Gruber E, Falkai P. Articulatory rehearsal in verbal working memory: a possible neurocognitive endophenotype that differentiates between schizophrenia and schizoaffective disorder. Neuroscience Letters 2006; 405 (1–2): 24-8.
  • 28 Gruber O, Diekhof EK, Falkai P. Die funktionelle Organisation des Stirnhirns: Relevanz für neuropsychiatrische Störungsbilder. Fortschritte der Neurologie – Psychiatrie 2008; 76 (03) 174-80.
  • 29 Gruber O. et al. Neuregulin-1 haplotype HAPICE is associated with reduced hippocampal volumes in schizophrenic patients and in non-affected family members. Journal of Psychiatric Research 2009; 43 (01) 1-6.
  • 30 Gundersen HJ, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147 (Pt 3): 229-63.
  • 31 Hakak Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98 (08) 4746-51.
  • 32 Haroutunian V. et al. Variations in oligodendrocyterelated gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. Int J Neuropsychopharmacol 2007; 10 (04) 565-73.
  • 33 Haroutunian V, Katsel P, Dracheva S, Davis KL. The human homolog of the QKI gene affected in the severe dysmyelination “qualing” mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 2006; 163 (10) 1834-7.
  • 34 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40-68.
  • 35 Heckers S. et al. Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am J Psychiatry 2004; 161 (04) 707-15.
  • 36 Henseler I, Falkai P, Gruber O. A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia. European Journal of Neuroscience 2009; 30 (04) 693-702.
  • 37 Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. Journal of Psychiatric Research. 2010 in press.
  • 38 Highley JR, Walker MA, McDonald B, Crow TJ, Esiri MM. Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry 2003; 183: 414-7.
  • 39 Hof P. et al. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 2002; 27: 1193-200.
  • 40 Hof PR. et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075-85.
  • 41 Honer WG. et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12 (04) 349-56.
  • 42 Hsu R. et al. Nogo receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One 2007; 02 (11) e1234.
  • 43 Hu S, Ying Z, Gomez-Pinilla F, Frautschy SA. Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain research 2009; 1249: 191-201.
  • 44 Johnstone EC. et al. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976; 02 (7992): 924-6.
  • 45 Kalkman HO. Altered growth factor signalling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacology and Therapeutics 2009; 121: 115-22.
  • 46 Katsel PL, Davis KL, Haroutunian V. Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer’s disease. In Rev Neurobiol 2005; 63: 51-82.
  • 47 Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386 (6624): 493-5.
  • 48 Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomena?. Schizophr Bull 2008; 34 (01) 72-92.
  • 49 Kovelman JA, Scheibel AB. A neurohistological correlate of schizophrenia. Biol Psychiatry 1984; 19 (12) 1601-21.
  • 50 McCarley RW. et al. MRI anatomy of schizophrenia. Biol Psychiatry 1999; 45 (09) 1099-119.
  • 51 McCullumsmith RE. et al. Expression of transcripts for myelination-related genes in the anterior cingulated cortex in schizophrenia. Schizophr Res 2007; 90 (1–3): 15-27.
  • 52 McInnes LA, Lauriat TL. RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev 2006; 30 (04) 551-61.
  • 53 McNeil TF, Cantor-Graae E, Weinberger DR. Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 2000; 157: 203-12.
  • 54 Melcher T, Falkai P, Gruber O. Functional brain abnormalities in psychiatric disorders: Neural mechanisms to detect and resolve cognitive conflict and interference. Brain Research Reviews 2008; 59 (01) 96-124.
  • 55 Meng J. et al. No association between the genetic polymorphisms in the RTN4R gene and schizophrenia in the Chinese population. J Neural Transm 2007; 114 (02) 249-54.
  • 56 Mitkus SN. et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008; 98 (1–3): 129-38.
  • 57 Millan MJ. N-methyl-D-aspartate receptors as target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology 2005; 179 (01) 30-53.
  • 58 Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 2006; 16 (05) 392-500.
  • 59 Newton SS, Duman RS. Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 2007; 21 (09) 715-25.
  • 60 Novak G, Tallerico T. Nogo A,B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3’-UTR. Brain Res 2006; 1120 (10) 161-71.
  • 61 Nunes MC. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003; 09 (04) 439-47.
  • 62 Pajonk F. et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 2010; 67 (02) 133-43.
  • 63 Parlapani E. et al. Gene expression of neuregulin-1 isoforms in different brain regions of elderly schizophrenia patients. World J Biol Psychiatry 2008; 07: 1-8.
  • 64 Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001; 02 (06) 417-24.
  • 65 Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex?. Neuropsychopharmacology 1996; 14 (01) 1-17.
  • 66 Peirce TR. et al. Convergent evidence for 2’, 3’-cyclic nucleotide 3’phosphodiesertase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006; 63 (01) 18-24.
  • 67 Pierri JN, Volk C, Auh S, Sampson A, Lewis DA. Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2001; 58: 466-73.
  • 68 Rajkowska G, Selemon D, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: a post-mortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55 (03) 215-24.
  • 69 Reif A. et al. Neural stem cell proliferation os decreased in schizophrenia, but not in depression. Mol Psychiatry 2006; 11: 514-22.
  • 70 Reif A, Schmitt A, Fritzen S, Lesch KP. Neurogenesis and schizophrenia: dividing neurons in a divided mind?. Eur Arch Psychiatry Clin Neurosci 2007; 257: 290-9.
  • 71 Robinson JL. et al. Fronto-temporal dysregulation in remitted bipolar patients: an fMRI delayed-nonmatch-to-sample (DNMS) study. Bipolar Disord 2009; 11 (04) 351-60.
  • 72 Rotarska-Jagiela A. et al. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuoimage 2008; 39 (04) 1522-32.
  • 73 Sanders GS. et al. Cognitive deficits, schizophrenia, and the anterior cingulate cortex. Trends Cogn Sci 2002; 06 (05) 190-2.
  • 74 Schlösser R, Wagner G, Köhler S, Sauer H. [Schizophrenia as a disconnection syndrome. Studies with functional magnetic resonance imaging and structural equation modeling]. Radiologe 2005; 45 (02) 137-40.
  • 75 Schlösser RG. et al. Fronto-cingulate effective connectivity in major depression: a study with fMRI and dynamic causal modeling. Nueroimage 2008; 43 (03) 645-55.
  • 76 Schmitt A. et al. Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. Journal of Neural Transmission 2004; 111 (01) 91-100.
  • 77 Schmitt A. et al. Impact of neuregulin-1 on the pathophysiology of schizophrenia in human post-mortem studies. European Archives of Psychiatry and Clinical Neuroscience 2008; 258 Suppl 5: 35-9.
  • 78 Schmitt A. et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathologica 2009; 117 (04) 395-407.
  • 79 Schmitt A. et al. Parieto-prefrontal dysfunction during visuo-auditory information processing in elderly, chronic schizophrenic patients and medication effects. Revista de Psiquiatria Clinica 2009; 36 (03) 89-96.
  • 80 Sommer U. et al. Differential expression of glutamate- and GABA-related presynaptic genes in a rat model of postnatal hypoxia: Relevance to schizophrenia. Journal of Neural Transmission. submitted.
  • 81 Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52 (10) 805-18.
  • 82 Selemon LD. et al. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry 2003; 60: 69-77.
  • 83 Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 04: 1-52.
  • 84 Star EN, Kwiatkowski DJ, Murthy VN. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neuroscience 2002; 05 (03) 239-46.
  • 85 Stark AK. et al. Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. Am J Psychiatry 2004; 161: 882-8.
  • 86 Stefansson H. et al. Neuregulin 1 and schizophrenia. Ann Med 2004; 36: 62-71.
  • 87 Sullivan PF. The genetics of schizophrenia. PLoS Medicine 2005; 02 (07) 614-8.
  • 88 Tkachev D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362 (9386): 798-805.
  • 89 Van Erp TG. et al. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 2002; 159: 1514-20.
  • 90 Verdoux H. et al. Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. Am J Psychiatry 1997; 154: 1220-7.
  • 91 Vostrikov V, Orlovskaya D. Uranova Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J Biol Psychiatry 2008; 09: 34-42.
  • 92 Wobrock T. et al. Cognitive impairment of executive function as a core symptom of schizophrenia. World Journal of Biological Psychiatry 2008; 29: 1-10.
  • 93 Wright IC. et al. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16-25.
  • 94 Zaidel DW, Esiri MM, Harrison PJ. Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997; 154: 812-8.
  • 95 Zornberg GL, Buka SL, Tsuang MT. Hypoxicischemic-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: a 19-year longitudinal study. Am J Psychiatry 2000; 157 (02) 196-202.
  • 96 Reif A, Schmitt A, Fritzen S, Lesch KP. Adulte Neurogenese und Schizophrenie – gibt es einen Zusammenhang?. Nervenheilkunde 2007; 26: 368-376.