Subscribe to RSS
DOI: 10.1055/s-0038-1628827
Zerebrale Bildgebung bei Gangstörungen
Struktur und FunktionBrain imaging in gait disordersstructure and functionPublication History
Eingegangen am:
08 January 2010
angenommen am:
23 January 2010
Publication Date:
31 January 2018 (online)
Zusammenfassung
Gangstörungen gehören zu den häufigsten Leitsymptomen in der Neurologie. Im höheren Lebensalter tragen sie durch die assoziierten Stürze wesentlich zur Morbidität und Einschränkung der Lebensqualität bei. Bei zentralen Gangstörungen dient die strukturelle Bildgebung dem Nachweis fokaler Läsionen und der Korrelation zum klinischen Befund bei generalisierten Hirnerkrankungen. Nuklearmedizinische bildgebende Verfahren sind klinisch bei der Darstellung der prä- und postsynaptischen dopaminergen Funktion etabliert. Experimentelle Untersuchungen mit funktionell bildgebenden Verfahren haben in den letzten Jahren einen Einblick in die supraspinale Gangsteuerung beim Menschen ermöglicht und gezeigt, dass sich das neuronale Netzwerk während der Evolution trotz des Überganges zum Zweibeingang weitgehend erhalten hat. Die aktuellen Zielregionen für die tiefe Hirnstimulation bei Parkinsonsyndromen liegen teilweise in für die Lokomotion relevanten Regionen (Nucleus subthalamicus, Nucleus pedunculopontinus). Die Wirkung der Therapie kann durch Modulation des supraspinalen Lokomotionsnetzwerkes erklärt werden.
Summary
Gait disorders are among the most common symptoms in clinical neurology. Associated falls in the elderly contribute to morbidity and reduced quality of life. In central gait disorders, structural brain imaging is used to show focal lesions and allows for the correlation to clinical presentation in more generalized brain disorders. Imaging techniques from nuclear medicine are used for the demonstration of pre- and postsynaptic dopaminergic function. Recently, experiments using functional neuroimaging have shown a supraspinal network for locomotion control in humans. Interestingly, the network is similar to the feline network despite the transition to bipedal locomotion during evolution. Target regions for deep brain stimulation in Parkinson syndromes overlap with locomotor regions (subthalamic and pedunculopontine nuclei). Therapeutic effects can in part be explained by modulation of supraspinal locomotor control.
-
Literatur
- 1 Aravamuthan BR. et al. Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 2007; 37: 694-705.
- 2 Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008; 23 (Suppl. 02) 461-467.
- 3 Bartels AL, Leenders KL. Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology. Cortex 2009; 45 (08) 915-21.
- 4 Bhidayasiri R. et al. Midbrain ataxia: possible role of the pedunculopontine nucleus in human locomotion. Cerebrovasc Dis 2003; 19: 95-6.
- 5 Brown TG. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond 1911; 84: 308-19.
- 6 Dietz V. Do human bipeds use quadrupedal coordination?. Trends Neurosci 2002; 25: 462-7.
- 7 Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet 1994; 344: 1260-1263.
- 8 Felicio AC. et al. Molecular imaging studies in Parkinson disease: reducing diagnostic uncertainty. Neurologist 2009; 15: 6-16.
- 9 Grillner S. Control of locomotion in bipeds, tetrapods and fish. In: Brooks VB. (ed.) Handbook of Physiology, The Nervous System, vol. II, Motor control, part 2. Bethesda. MD: American Physiological Society; 1981
- 10 Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 2006; 52: 751-66.
- 11 Hashimoto T. Speculation on the responsible sites and pathophysiology of freezing of gait. Parkinsonism Rel Dis 2006; 12: S55-S62.
- 12 Hathout GM, Bhidayasiri R. Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus. AJR Am J Roentgenol 2005; 184: 953-6.
- 13 Jahn K. et al. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 2008; 171: 353-62.
- 14 Jahn K. et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 2008; 39: 786-92.
- 15 Jahn K. et al. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004; 22: 1722-31.
- 16 Kuo SH, Kenney C, Jankovic J. Bilateral pedunculopontine nuclei strokes presenting as freezing of gait. Mov Disord 2008; 23: 616-9.
- 17 la CFougère. et al. Real versus imagined locomotion: A [(18)F]-FDG PET-fMRI comparison. Neuroimage. 2009 Dec 23; E-pub ahead of print.
- 18 Lee MS, Rinne JO, Marsden CD. The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 2000; 41: 167-84.
- 19 Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 1994; 35: 619-21.
- 20 Muthusamy KA. et al. Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 2007; 107: 814-20.
- 21 Nandhagopal R, McKeown MJ, Stoessl AJ. Functional imaging in Parkinson disease. Neurology 2008; 70: 1478-88.
- 22 Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000; 123 (Pt 9): 1767-83.
- 23 Pavese N, Brooks DJ. Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta 2009; 1792: 722-9.
- 24 Shik ML, Orlovsky GN. Neurophysiology of locomotor automatism. Physiological Reviews 1976; 56: 465-501.
- 25 Stefani A. et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007; 130: 1596-607.
- 26 Stolze H. et al. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord 2005; 20: 89-94.
- 27 Vanneste JA. Diagnosis and management of normal-pressure hydrocephalus. J Neurol 2000; 247: 5-14.
- 28 Volkmann J. Deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord 2007; 13 (Suppl. 03) S462-S465.
- 29 Zweig RM. et al. The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 1989; 26: 41-6.
- 30 Zweig RM. et al. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 1987; 22: 18-25.