Osteologie 2013; 22(01): 13-17
DOI: 10.1055/s-0038-1630104
Hochauflösende Methoden in der Osteologie
Schattauer GmbH

High resolution peripheral quantitative computed tomography (HR-pQCT) und die klinische Relevanz der Resultate

High resolution peripheral quantitative computed tomography (HR-pQCT) – clinical relevance of the results
J. Haschka
1   II. Medizinische Abteilung, KH der Barmherzigen Schwestern, Akademisches Lehrkrankenhaus der Medizinischen Universität Wien, Vinforce Study Group, Wien, Österreich
,
J. M. Patsch
2   Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
3   Klin. Abteilung für Neuro-radiologie und Muskuloskeletale Radiologie, Univ. Klinik für Radiodiagnostik AKH Wien, Medizinische Universität Wien, Österreich
,
R. Kocijan
1   II. Medizinische Abteilung, KH der Barmherzigen Schwestern, Akademisches Lehrkrankenhaus der Medizinischen Universität Wien, Vinforce Study Group, Wien, Österreich
,
H. Resch
1   II. Medizinische Abteilung, KH der Barmherzigen Schwestern, Akademisches Lehrkrankenhaus der Medizinischen Universität Wien, Vinforce Study Group, Wien, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht: 06 November 2012

angenommen: 08 November 2012

Publication Date:
29 January 2018 (online)

Zusammenfassung

Knochenstabilität ist durch Knochenvolumen und Mikroarchitektur des Knochens determiniert. Mittels HR-pQCT (high resolution peripheral quantitative computed tomography) steht eine nicht invasive Methode zur Verfügung, um die Mikroarchitektur des Knochens darzustellen. Die Resultate aus zahlreichen Studien geben Rückschlüsse auf unterschiedliche Strukturalterationen im Rahmen von Erkrankungen, die mit einem erhöhten Frakturrisiko einhergehen. Die Knochendichtemessung mittels DXA spiegelt das Frakturrisiko oft nicht adäquat wider. Umso entscheidender ist es, Risikofaktoren in der Wahl der Therapie zu berücksichtigen. Die klinische Relevanz der Resultate aus HR-pQCT-Messungen besteht derzeit dahingehend, dass wertvolle Informationen über Veränderungen der Mikroarchitektur auf Forschungsebene erhoben werden.

Summary

Bone strength is determined of bone volume and bone microarchitecture. HR-pQCT (high resolution peripheral quantitative computed tomography) provides images of bone microarchitecture as a non-invasive method. In multiple studies structural alterations have been detected to be responsible for increased fracture risk in patients with diseases accompanied by increased fracture risk. The measurement of bone mineral density (BMD) with DXA often does not reflect the actual fracture risk. It is important to be aware of risk factors for increased fracture risk. The clinical relevance of the results of HR-pQCT is to provide more information about the pathogenesis of fractures and to provide data for clinical trials.

 
  • Literatur

  • 1 Boutroy S, Bouxsein M, Munoz F, Delmas PD. In Vivo Assessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography. J Clin Endocrinol Metab. 2005 90. (12) 6508-6515. [Epub 2005 Sep 27].
  • 2 Patsch JM, Burghardt AJ, Yap SP. et al. Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2012 Sep 18.
  • 3 Fouque-Aubert A, Boutroy S, Marotte H. et al. Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis. 2010 69. (9) 1671-1676. [Epub 2010 Jun 4]
  • 4 Zhu TY, Griffith JF, Qin L. et al. Bone Density and Microarchitecture: Relationship Between Hand, Peripheral, and Axial Skeletal Sites Assessed by HR-pQCT and DXA in Rheumatoid Arthritis. Calcif Tissue Int 2012; 91 (5) 343-355.
  • 5 Schnackenburg KE, Macdonald HM, Ferber R. et al. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc 2011; 43 (11) 2110-2119.
  • 6 Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987; 2: 595-610.
  • 7 Nishiyama KK, Macdonald HM, Buie HR. et al. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 2010; 25 (4) 882-890.
  • 8 Burghardt AJ, Kazakia GJ, Ramachandran S. et al. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 2010; 25 (5) 983-993.
  • 9 Pialat JB, Burghardt AJ, Sode M. et al. Motion artefacts in high-resolution peripheral quantitative computed tomography of wrist and ankle: usefulness of visual grading to assess image quality. J Bone Miner Res 2010; 25: S373.
  • 10 Nickolas TL, Shirazian S, Shane E. High-resolution computed tomography imaging: a virtual bone biopsy. Kidney Int 2010; 77 (11) 1046.
  • 11 Müller R. The Zürich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging 2002; 13 (5) 307-322.
  • 12 Cohen A, Dempster DW, Müller R. et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 2010; 21: 263-273.
  • 13 Liu XS, Cohen A, Shane E. et al. Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 2010; 25 (10) 2229-2238.
  • 14 Liu XS, Cohen A, Shane E. et al. Individual trabeculae segmentation (ITS)-based morphological analyses of high resolution peripheral quantitative computed tomography images detect abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 2010; 25: 1486-1505.
  • 15 Pialat JB, Vilayphiou N, Boutroy S. et al. Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone. 2012 51. (3) 362-368. [Epub 2012 Jun 20].
  • 16 Valentinitsch A, Patsch JM, Deutschmann J. et al. Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone. 2012 51. (3) 480-487. [Epub 2012 Jun 13].
  • 17 Valentinitsch A, Patsch J, Kainberger F. et al. Texture Analysis in Quantitative Osteoporosis Assessment: Microarchitecture. Proceedings of the IEEE International Symposium on Biomedical Imaging. Rotterdam: April 2010.
  • 18 Vilayphiou N, Boutroy S, Szulc P. et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 2011; 26: 965-973.
  • 19 Boutroy S, Van Rietbergen B, Sornay-Rendu E. et al. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 2008; 23: 392-399.
  • 20 Mueller TL, Stauber M, Kohler T. et al. Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone. 2009 44. (2) 364-371. [Epub 2008 Nov 3].
  • 21 de Liefde II, van der Klift M, de Laet CE. et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporosis international 2005; 16 (12) 1713-1720.
  • 22 Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporosis international 2007; 18 (4) 427-444.
  • 23 Melton 3rd LJ, Riggs BL, Leibson CL. et al. A bone structural basis for fracture risk in diabetes. The Journal of clinical endocrinology and metabolism 2008; 93 (12) 4804-4809.
  • 24 Schwartz AV, Vittinghoff E, Bauer DC. et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011; 305 (21) 2184-2192.
  • 25 Bacchetta J, Boutroy S, Vilayphiou N. et al. Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II-IV chronic kidney disease. J Bone Miner Res 2010; 25 (4) 849-857.
  • 26 Cejka D, Patsch JM, Weber M. et al. Bone Microarchitecture in Hemodialysis Patients Assessed by HR-pQCT. Clin J Am Soc Nephrol 2011; 6 (9) 2264-2271.
  • 27 Patsch J, Zulliger MA, Wolf F. et al. Proposal of a novel method for assessing arterial calcification via HR-pQCT: The Swiss-Austrian-Score. Bone. 2012 Suppl1 238.
  • 28 Stach CM, Baeuerle M, Englbrecht M. et al. Periarticular Bone Structure in Rheumatoid Arthritis Patients and Healthy Individuals Assessed by High-Resolution Computed Tomography. Arthritis rheum 2010; 62: 330-339.
  • 29 Finzel S, Englbrecht M, Engelke K. et al. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 2011; 70: 122-127.
  • 30 Folkestad L, Hald JD, Hansen S. et al. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res 2012; 27 (6) 1405-1412.