Osteologie 2013; 22(02): 100-107
DOI: 10.1055/s-0038-1630113
Osteologie des Kindes- und Jugendalters
Schattauer GmbH

Genetische Störungen der Knochenmineralisation

Genetic disorders of bone mineralization
D. Schnabel
1   Pädiatrische Endokrinologie und Diabetologie, Sozialpädiatrisches Zentrum, Charité, Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 18 March 2013

angenommen: 20 March 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

Angeborene Störungen im Vitamin-D-Metabolismus und/oder in der Regulation der Phosphathomöostase führen zu einer gestörten Mineralisation des Skelettsystems. Durch das herabgesetzte Kalzium-Phosphat-Produkt bildet sich im Kindesalter eine Rachitis aus, bei Erwachsenen eine Osteomalazie. Klinische Symptome sind zumeist Extremitätenfehlstellungen (Genua vara/Genua valga), aber auch Knochenschmerzen, progrediente Muskelschwäche, Tetanie. Besonders in den vergangenen Jahren sind neue genetische Ursachen von Störungen im Phosphatstoffwechsel publiziert worden. Dieses Review beschreibt Klinik und Pathophysiologie der derzeit bekannten Ursachen angeborener Störungen des Vitamin-D-Stoffwechsels sowie der Phosphathomö ostase und zeigt mögliche zukünftige medikamentöse Optionen in der Behandlung von Patienten mit hypophosphatämischer Rachitis auf.

Summary

Hereditary disorders in vitamin D metabolism and/or in the regulation of phosphate homeostasis resulted in impaired bone mineralisation. The abnormal mineralisation of the skeleton leads to rickets in children and to osteomalacia in adults. Leading symptoms in impaired mineralisation are mostly bone deformities, but also bone pain, slow motor development, progressive muscle weakness, neuromuscular irritability or convulsions. Over the last decade our knowledge especially of the regulation of phosphorus metabolism has expended. This overview describes clinical and pathophysiological conditions of various hereditary disorders of vitamin D metabolism and phosphate homeostasis including data about possible future therapeutic strategies.

 
  • Literatur

  • 1 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266-281.
  • 2 Mentrup B, Ebert R, Walther JN. et al. Molekularbiologische Aspekte und Signalwege von Vitamin D. Osteologie 2011; 20: 293-298.
  • 3 Schlingmann KP, Kaufmann M, Weber S. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365: 410-421.
  • 4 Schnabel D. Störungen des Kalzium-Phosphat-Stoffwechsels. In: Lentze MJ, Schaub J, Schulte FJ, Spranger J. Hrsg. Pädiatrie – Grundlagen und Praxis, 4. Auflage. Berlin: Springer (im Druck);
  • 5 Bergwitz C, Jüppner H. Regulation of Phosphate Homeostasis by PTH, Vitamin D and FGF 23. Annu Rev Med 2010; 61: 91-104.
  • 6 Shimada T, Kakitani M, Yamazaki Y. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. Clin Invest 2004; 113: 561-568.
  • 7 Razzaque MS, Lanske B. Hypervitaminosis D and premature aging: lesions learned from FGF23 and Klotho mutant mice. TRENDS in Molecular Medicine 2006; 12: 298-305.
  • 8 Strom TM, Jüppner H. PHEX, FGF-23, DMP-1 and beyond. Curr Opin Nephrol Hypertens 2008; 17: 357-362.
  • 9 Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009; 27: 392-401.
  • 10 Schnabel D. Störungen des Kalzium- und Phosphatstoffwechsels im Kindes- und Jugendalter. Kinder- und Jugendmedizin 2008; 8: 343-350.
  • 11 Cheng JB, Levine MA, Bell NH. et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. PNAS 2004; 101: 7711-7715.
  • 12 Levine MA, Dang A, Ding C. et al. Tropical rickets in Nigeria: Mutation of CYP2R1 gene encoding vitamin D-25-hydroxylase as a cause of vitamin D dependent rickets. Bone 2007; 40: S60-S61.
  • 13 Al Mutair AN, Nasrat GH, Russell DW. Mutation oft he CYP2R1 Vitamin D 25-Hydroxylase in a Saudi Arabian Family with severe Vitamin D deficiency. J Clin Endocrinol Metab 2012; 97: E2022-E2025.
  • 14 Prader A, Illig R, Heierli E. Eine besondere Form der primären Vitamin-D-resistenten Rachitis mit Hypocalcämie und autosomal-dominantem Erbgang: Die hereditäre Pseudo-Mangelrachitis. Helv Paediatr Acta 1961; 16: 452-468.
  • 15 Kitanka S, Takeyama K-J, Murayama A. et al. Inactivating mutations in the 25-hydroxyVitamin D3 1-hydroxylase gene in patients with pseudoVitamin-D-deficiency rickets. N Engl J Med 1998; 338: 653-661.
  • 16 AWMF-LL-Register Nr. 027/039 Vitamin D-abhängige Rachitiden.
  • 17 Brooks MH, Bell NH, Love L. et al. Vitamin-D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. New Eng J Med 1978; 298: 996-999.
  • 18 Tiosano D, Hadad S, Chen Z. et al. Calcium Absorption, Kinetics, Bone Density, and Bone Structure in Patients with Hereditary Vitamin D-Resistant Rickets. J Clin Endocrinol Metab 2011; 96: 3701-3709.
  • 19 Pahuja DN, DeLuca HF. Stimulationof intestinal calciumtransport and bone calcium mobilization by prolactin in vitamin D-deficient rats. Science 1981; 214: 1038-1039.
  • 20 Colin EM, Van Den Bem dGJ, Van Aken M. et al. Evidence for involvement of 17b-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 1999; 14: 57-64.
  • 21 Ueyama T, Shirasawa N, Numazawa M. et al. Gastric parietal cells: potent endocrine role in secreting estrogen as a possible regulator of gastro-hepatic axis. Endocrinology 2002; 143: 3162-3170.
  • 22 Querfeld U. Vitamin D und Niere. Osteologie 2011; 20: 320-323.
  • 23 Carpenter TO, Imel EA, Holm IA. et al. A Clinician`s Guide to X-linked Hypophosphatemia. JBMR 2011; 26: 1381-1388.
  • 24 Ardeshirpour L, Cole DE, Carpenter TO. Evaluation of bone and mineral disorders. Pediatr Endocrinol Rev 2007; Suppl 1 584-598.
  • 25 Bianchine JW, Stambler AA, Harrison HE. Familial hypophosphataemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser 1971; 7: 287-295.
  • 26 Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol 2012; 27: 1477-1487.
  • 27 Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 2012; 30: 1-9.
  • 28 Lorenz-Depiereux B, Bastepe M, Benet-Pages A. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006; 38 (11) 1248-1250.
  • 29 Lorenz-Depiereux B, Schnabel D, Tiosano D. et al. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010; 86 (2) 267-272.
  • 30 Lorenz-Depiereux B, Benet-Pages A, Eckstein G. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SL C34A3. Am J Hum Genet 2006; 78: 193-201.
  • 31 AWMF-LL-Register Nr. 027/038 Hereditäre hypophosphatämische Rachitis.
  • 32 Aono Y, Yamazaki Y, Yasutake J. et al. Therapeutic effects of Anti-FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia. JBMR 2009; 24: 1879-1888.
  • 33 Liu ES, Carpenter TO, Gundberg CM. et al. Calcitonin Administration in X-linked Hypophosphatemia. N Engl J Med 2011; 364: 1678-1680.
  • 34 Alon US, Levy-Olomucki R, Moore WV. et al. Calcimimetics as an Adjuvant Treatment for Familial Hypophosphatemic Rickets. Clin J Am Soc Nephrol 2008; 3: 658-664.
  • 35 Yuan B, Feng JQ, Bowman S. et al. Hexa-D-Arginine treatment increases 7B2-PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. JBMR. 2012 (in press)
  • 36 Zivicnjak M, Schnabel D, Staude H. et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. JCEM 2011; 96: E2097-E2105.