Osteologie 2013; 22(03): 200-205
DOI: 10.1055/s-0038-1630124
Osteologische Biomaterialien
Schattauer GmbH

Osteoklastäre Resorption osteologischer Biomaterialien

Osteoclastic resorption of bone substitute biomaterials
L. Grünherz
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München
,
L. Wu
2   Zentrum für Material- und Küstenforschung, Helmholtz-Zentrum Geesthacht
,
N. Wojtas
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München
,
F. Kleinmichel
3   Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau, Technische Universität München
,
C. I. Günter
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München
,
H.-G. Machens
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München
,
A. F. Schilling
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München
4   Centrum für An gewandte Naturwissenschaften in Tissue Engeneering und Regenerativer Medizin (CANTER), Hochschule München/LMU/TUM, München
› Author Affiliations
Further Information

Publication History

eingereicht: 18 June 2013

angenommen: 21 June 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

Knochen ist ein lebendiges dynamisches Gewebe, das ständigem zellulär vermitteltem Umbau unterliegt. Dieser physiologische Prozess führt dazu, dass nach Implantation von Knochenersatz-Biomaterialien die Knochenzellen beginnen, mit dem Implantat zu interagieren und sowohl das Material als auch den umgebenden Knochen zu verändern. Dieser Prozess ist für die Lebensdauer des Implantates und damit für den klinischen Erfolg von besonderer Bedeutung. In diesem Artikel geben wir einen Überblick über die aktuellen Entwicklungen in diesem Zusammenhang. Es werden insbesondere die physiologische Notwendigkeit des Remodelings, die Resorption von Biomaterialien, die Aktivierung von Osteoklasten durch Materialpartikel sowie die Effekte der medikamentösen Regulierung des osteoklastären Knochenabbaus betrachtet.

Summary

Bone is a dynamic living tissue which is constantly subject to cellular conveyed remodeling. After the implantation of bone replacement biomaterials, this physiological process leads to interaction of the bone cells with the implant and alteration of both, the material as well as the surrounding bone. This is of particular significance for the longevity of the implant and the clinical success related to it. In this article we will provide a summary of the current developments in this context. Of particular consideration are the physiological necessity for remodeling, the resorption of biomaterials and the activation of osteoclasts through material particles, as well as the effects of medicational adjustment of the osteoclastic bone resorption.

 
  • Literatur

  • 1 Schell H, Reuther T, Duda GN, Lienau J. Die Schrauben-Knochen-Verbindung beim Fixateur externe. Osteologie 2010; 19 (3) 226-231.
  • 2 Schwartz Z, Weesner T, van Dijk S. et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. Journal of periodontology 2000; 71 (8) 1258-1269. [Epub 2000; Sep 6].
  • 3 Rueger JM. [Bone substitution materials. Current status and prospects]. Knochenersatzmittel. Heutiger Stand und Ausblick. Der Orthopäde 1998; 27 (2) 72-79. [Epub 1998, Apr 8].
  • 4 Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcified tissue research. 1969; 3 (3) 211-237. [Epub 1969; Jan 1].
  • 5 Amling M, Pogoda P, Beil FT. et al. Central control of bone mass: brainstorming of the skeleton. Advances in experimental medicine and biology 2001; 496: 85-94. [Epub 2002, Jan 11].
  • 6 Corral DA, Amling M, Priemel M. et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 1998; 95 (23) 13835-13840. [Epub 1998, Nov 13].
  • 7 Ducy P, Amling M, Takeda S. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100 (2) 197-207. [Epub 2000, Feb 5].
  • 8 Kondo H, Nifuji A, Takeda S. et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. The Journal of biological chemistry 2005; 280 (34) 30192-30200. [Epub 2005, Jun 18].
  • 9 Eriksen EF, Langdahl B, Vesterby A. et al. Hormone replacement therapy prevents osteoclastic hyperactivity: A histomorphometric study in early postmenopausal women. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1999; 14 (7) 1217-1221. [Epub 1999, Jul 15].
  • 10 Hsieh PH, Chang YH, Lee PC, Shih CH. Periprosthetic fractures of the greater trochanter through osteolytic cysts with uncemented MicroStructured Omnifit prosthesis: retrospective analyses pf 23 fractures in 887 hips after 5-14 years. Acta orthopaedica 2005; 76 (4) 538-543. [Epub 2005, Oct 1].
  • 11 Helfrich M, Perdu B, Coxon F. Human rezessive Osteopetrose. Osteologie 2009; 18 (4) 260-267.
  • 12 Schilling AF, Mulhausen C, Lehmann W. et al. High bone mineral density in pycnodysostotic patients with a novel mutation in the propeptide of cathepsin K. Osteoporosis international 2007; 18 (5) 659-669. [Epub 2007, Jan 9].
  • 13 Stanford RE, Loefler AH, Stanford PM, Walsh WR. Multiaxial pedicle screw designs: static and dynamic mechanical testing. Spine 2004; 29 (4) 367-375. [Epub 2004, Apr 20].
  • 14 Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta orthopaedica Scandinavica 1981; 52 (5) 481-490. [Epub 1981, Oct 1].
  • 15 Ruff C, Holt B, Trinkaus E. Who's afraid of the big bad Wolff? “Wolff's law” and bone functional adaptation. American journal of physical anthropology 2006; 129: 484-498.
  • 16 Rychly J. Mechanobiology of bone cells. Osteologie 2010; 19 (3) 245-249.
  • 17 Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126 (4) 677-689. [Epub 2006, Aug 23].
  • 18 Pelham Jr. RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America 1997; 94 (25) 13661-13665. [Epub 1998; Feb 12].
  • 19 Khatiwala CB, Kim PD, Peyton SR, Putnam AJ. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. Journal of bone and mineral research 2009; 24 (5) 886-898. [Epub 2008, Dec 31].
  • 20 Soininvaara TA, Jurvelin JS, Miettinen HJ. et al. Effect of alendronate on periprosthetic bone loss after total knee arthroplasty: a one-year, randomized, controlled trial of 19 patients. Calcified tissue international 2002; 71 (6) 472-477. [Epub 2002, Oct 9].
  • 21 Wilkinson JM, Eagleton AC, Stockley I. et al. Effect of pamidronate on bone turnover and implant migration after total hip arthroplasty: a randomized trial. Journal of orthopaedic research 2005; 23 (1) 1-8. [Epub 2004, Dec 21].
  • 22 Skoldenberg OG, Salemyr MO, Boden HS. et al. The effect of weekly risedronate on periprosthetic bone resorption following total hip arthroplasty: a randomized, double-blind, placebo-controlled trial. The Journal of bone and joint surgery American volume 2011; 93 (20) 1857-1864. [Epub 2011, Oct 21].
  • 23 Pataki A, Muller K, Green JR. et al. Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. The Anatomical record 1997; 249 (4) 458-468. [Epub 1998, Feb 12].
  • 24 Ayan M, Dolanmaz D, Mihmanli A. et al. The effect of systemically administrated zoledronic acid on the osseointegration of dental implants. Oral diseases 2012; 18 (8) 802-808. [Epub 2012, Jun 21].
  • 25 Hansson U, Toksvig-Larsen S, Ryd L, Aspenberg P. Once-weekly oral medication with alendronate does not prevent migration of knee prostheses: A double-blind randomized RSA study. Acta orthopaedica 2009; 80 (1) 41-45. [Epub 2009, Mar 21].
  • 26 Prieto-Alhambra D, Javaid MK, Judge A. et al. Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ 2011; 343: d7222. [Epub 2011, Dec 8].
  • 27 Back DA, Pauly S, Rommel L. et al. Effect of local zoledronate on implant osseointegration in a rat model. BMC musculoskeletal disorders 2012; 13: 42. [Epub 2012, Mar 24].
  • 28 Bodde EW, Kowalski R, Spauwen PH, Jansen JA. No increased bone formation around alendronate or omeprazole loaded bioactive bone cements in a femoral defect. Tissue engineering Part A 2008; 14 (1) 29-39.
  • 29 Keller J, Brink S, Busse B. et al. Divergent resorbability and effects on osteoclast formation of commonly used bone substitutes in a human in vitro-assay. PloS one 2012; 7 (10) e46757. [Epub 2012, Oct 17].
  • 30 Winkler T, Hoenig E, Gildenhaar R. et al. Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities. Acta biomaterialia 2010; 6 (10) 4127-4135. [Epub 2010, May 11].
  • 31 Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. The Journal of bone and joint surgery British volume 1990; 72 (6) 988-992. [Epub 1990, Nov 1].
  • 32 Sabokbar A, Fujikawa Y, Brett J. et al. Increased osteoclastic differentiation by PMMA particle-associated macrophages. Inhibitory effect by interleukin 4 and leukemia inhibitory factor. Acta orthopaedica Scandinavica 1996; 67 (6) 593-598. [Epub 1996, Dec 1].
  • 33 Kim KJ, Itoh T, Tanahashi M, Kumegawa M. Activation of osteoclast-mediated bone resorption by the supernatant from a rabbit synovial cell line in response to polyethylene particles. Journal of biomedical materials research 1996; 32 (1) 3-9. [Epub 1996, Sep 1].
  • 34 DeHeer DH, Engels JA, DeVries AS. et al. In situ complement activation by polyethylene wear debris. Journal of biomedical materials research 2001; 54 (1) 12-19. [Epub 2000, Nov 15].
  • 35 Sun JS, Lin FH, Hung TY. et al. The influence of hydroxyapatite particles on osteoclast cell activities. Journal of biomedical materials research 1999; 45 (4) 311-321. [Epub 1999, May 13].
  • 36 Sommer B, Felix R, Sprecher C. et al. Wear particles and surface topographies are modulators of osteoclastogenesis in vitro. Journal of biomedical materials research Part A 2005; 72 (1) 67-76. [Epub 2004, Nov 13].
  • 37 Hirayama T, Fujikawa Y, Itonaga I, Torisu T. Effect of particle size on macrophage-osteoclast differentiation in vitro. Journal of orthopaedic science 2001; 6 (1) 53-58. [Epub 2001, Apr 6].
  • 38 Lange T, Schilling AF, Peters F. et al. Size dependent induction of proinflammatory cytokines and cytotoxicity of particulate beta-tricalciumphosphate in vitro. Biomaterials 2011; 32 (17) 4067-4075. [Epub 2011, Mar 23].
  • 39 Vogel M, Voigt C, Knabe C. et al. Development of multinuclear giant cells during the degradation of Bioglass particles in rabbits. Journal of biomedical materials research Part A 2004; 70 (3) 370-379. [Epub 2004, Aug 5].
  • 40 Marchisio M, Di Carmine M, Pagone R. et al. Implant surface roughness influences osteoclast proliferation and differentiation – Applied biomaterials. Journal of biomedical materials research Part B 2005; 75 (2) 251-256. [Epub 2005, Aug 4].
  • 41 Schilling AF, Linhart W, Filke S. et al. Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 2004; 25 (18) 3963-3972. [Epub 2004, Mar 30].
  • 42 Monchau F, Lefevre A, Descamps M. et al. In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate. Biomolecular engineering 2002; 19 (2-6) 143-152. [Epub 2002, Aug 31].
  • 43 Muller-Mai CM, Stupp SI, Voigt C, Gross U. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. Journal of biomedical materials research 1995; 29 (1) 9-18. [Epub 1995, Jan 1].
  • 44 Benghuzzi H, Puckett A, Tucci M, Roberts B. Bioceramics surface modification by means of osteoclasts in culture. Biomedical sciences instrumentation 1999; 35: 321-326. [Epub 2001, Jan 6].
  • 45 Taylor JC, Cuff SE, Leger JP. et al. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. The International journal of oral & maxillofacial implants 2002; 17 (3) 321-330. [Epub 2002, Jun 21].
  • 46 Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Annals of the rheumatic diseases 1998; 57 (10) 614-618. [Epub 1999, Jan 20].
  • 47 von Knoch F, Heckelei A, Wedemeyer C. et al. Suppression of polyethylene particle-induced osteolysis by exogenous osteoprotegerin. Journal of biomedical materials research Part A 2005; 75 (2) 288-294. [Epub 2005, Aug 10].
  • 48 Chen D, Zhang X, Guo Y. et al. MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model. International journal of molecular medicine 2012; 30 (6) 1417-1423. [Epub 2012, Oct 3].
  • 49 Kamakura S, Sasano Y, Shimizu T. et al. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. Journal of biomedical materials research 2002; 59 (1) 29-34. [Epub 2001, Dec 18].
  • 50 Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials 1997; 18 (15) 1037-1041. [Epub 1997, Aug 1].
  • 51 Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical orthopaedics and related research 1988; (232) 127-138. [Epub 1988, Jul 7].
  • 52 Kraal T, Mullender M, de Bruine JH. et al. Resorbability of rigid beta-tricalcium phosphate wedges in open-wedge high tibial osteotomy: a retrospective radiological study. The Knee 2008; 15 (3) 201-205. [Epub 2008, Apr 16].
  • 53 Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in molecular medicine 2005; 11 (2) 76-81. [Epub 2005, Feb 8].
  • 54 Habibovic P, Kruyt MC, Juhl MV. et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2008; 26 (10) 1363-1370. [Epub 2008, Apr 12].
  • 55 Draenert ME, Kunzelmann KH, Forriol F. et al. Primary cancellous bone formation with BMP and micro-chambered beads: experimental study on sheep. Bone 2013; 52 (1) 465-473. [Epub 2013, Jan 23].
  • 56 Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. Journal of prosthodontics 2006; 15 (5) 321-328. [Epub 2006, Sep 9].
  • 57 Hasegawa M, Doi Y, Uchida A. Cell-mediated bioresorption of sintered carbonate apatite in rabbits. The Journal of bone and joint surgery British volume 2003; 85 (1) 142-147. [Epub 2003, Feb 15].
  • 58 Rumpel E, Wolf E, Kauschke E. et al. The biodegradation of hydroxyapatite bone graft substitutes in vivo. Folia morphologica 2006; 65 (1) 43-48. [Epub 2006, June 20].
  • 59 Nagayama M, Takeuchi H, Doi Y. Comparison of carbonate apatite and beta-tricalcium phosphate (resorbable calcium phosphates) implanted subcutaneously into the back of rats. Dental materials journal 2006; 25 (2) 219-225. [Epub 2006, Aug 19].
  • 60 Leeuwenburgh S, Layrolle P, Barrere F. et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. Journal of biomedical materials research 2001; 56 (2) 208-215. [Epub 2001, May 8].
  • 61 Farina NM, Guzon FM, Pena ML, Cantalapiedra AG. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs. Journal of materials science Materials in medicine. 2008; 19 (4) 1565-1573. [Epub 2008, Feb 27].
  • 62 Granito RN, Renno AC, Ravagnani C. et al. In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): A biomechanical and histomorphometric study in rat tibial defects – Applied biomaterials. Journal of biomedical materials research Part B 2011; 97 (1) 139-147. [Epub 2011, Feb 4].
  • 63 Hernandez A, Sanchez E, Soriano I. et al. Material-related effects of BMP-2 delivery systems on bone regeneration. Acta biomaterialia 2012; 8 (2) 781-791. [Epub 2011, Oct 26].
  • 64 Reichert C, Gotz W, Reimann S. et al. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie 2013; 74 (2) 165-174. [Epub 2013, Mar 8].
  • 65 Gerber Th, Traykova T, Henkel KO, Bienengraeber V. Development and in vivo test of sol-gel derived bone grafting materials. Journal of Sol-Gel Science and Technology 2003; 26 (3) 1173-1178.
  • 66 Domaschke H, Gelinsky M, Burmeister B. et al. In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue engineering 2006; 12 (4) 949-958. [Epub 2006, May 6].
  • 67 Yokoyama A, Gelinsky M, Kawasaki T. et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen – an animal study – Applied biomaterials. Journal of biomedical materials research Part B 2005; 75 (2) 464-472. [Epub 2005, Jul 27].
  • 68 Long T, Hong F, Shen S. et al. In vitro degradation of electrodeposited calcium phosphate coatings by osteoclast-like cells. Biomed Mater 2012; 7 (4) 045012. [Epub 2012, June 2].
  • 69 Lafantaisie-Favreau CH, Guzman-Morales J, Sun J. et al. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC musculoskeletal disorders 2013; 14: 27. [Epub 2013, Jan 18].
  • 70 Gerhart TN, Renshaw AA, Miller RL. et al. In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement. Journal of biomedical materials research 1989; 23 (1) 1-16. [Epub 1989, Jan 1].