Nuklearmedizin 1999; 38(04): 108-114
DOI: 10.1055/s-0038-1632201
Originalarbeiten — Original Articles
Schattauer GmbH

F-18-FDG Positron Imaging in Oncological Patients: Gamma Camera Coincidence Detection versus Dedicated PET

F-18-FDG-Positronen-Emissions-Tomographie bei onkologischen Patienten: Doppelkopf-Koinzidenz-Gammakamera versus Vollring-PET
M. Zimny
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
H.-J. Kaiser
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
U. Cremerius
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
O. Sabri
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
M. Schreckenberger
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
P. Reinartz
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
,
U. Büll
1   Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Germany
› Author Affiliations
Further Information

Publication History

Received: 11 January 1999

in in revised for: 19 February 1999

Publication Date:
02 February 2018 (online)

Summary

Aim of the present study was to investigate the feasibility of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) imaging in oncological patients with a dual head gamma camera modified for coincidence detection (MCD). Methods: Phantom studies were done to determine lesion detection at various lesion-to-background ratios, system sensitivity and spatial resolution. Thirty-two patients with suspected or known malignant disease were first studied with a dedicated full-ring PET system (DPET) applying measured attenuation correction and subsequently with an MCD system without attenuation correction. MCD images were first interpreted without knowledge of the DPET findings. In a second reading, MCD and DPET were evaluated simultaneously. Results: The phantom studies revealed a comparable spatial resolution for DPET and MCD (5.9 × 6.3 × 4.2 mm vs. 5.9 × 6.5 × 6.0 mm). System sensitivity of MCD was less compared to DPET (91 cps/Bq/ml/cmF0V vs. 231 cps/ Bq/ml/cmFOv). At a lesion-to-background ratio of 4:1, DPET depicted a minimal phantom lesion of 1.0 cm in diameter, MCD a minimal lesion of 1.6 cm. With DPET, a total of 91 lesions in 27 patients were classified as malignant. MCD without knowledge of DPET results revealed increased FDG uptake in all patients with positive DPET findings. MCD detected 72 out of 91 DPET lesions (79.1 %). With knowledge of the DPET findings, 11 additional lesions were detected (+12%). MCD missed lesions in six patients with relevance for staging in two patients. All lesions with a diameter above 18 mm were detected. Conclusion: MCD FDG imaging yielded results comparable to dedicated PET in most patients. However, a considerable number of small lesions clearly detectable with DPET were not detected by MCD alone. Therefore, MCD cannot yet replace dedicated PET in all oncological FDG studies. Further technical refinement of this new method is needed to improve image quality (e.g. attenuation correction).

Zusammenfassung

Ziel dieser Studie war der Vergleich einer modifizierten, koinzidenzfähigen Doppelkopf-Gammakamera (MCD) mit einem dedizierten Vollring-Positronenemissionstomographen (DPET) zur PET mit 2-[18Fj-Fluor-2-Deoxy-D-Glukose (FDG) bei onkologischen Patienten. Methodik: Mittels Phantomstudien wurden Herderkennbarkeit, Systemsensitivität und räumliche Auflösung für beide Systeme verglichen. Zweiunddreißig Patienten mit gesicherten oder vermuteten malignen Erkrankungen wurden zunächst mit DPET unter Verwendung einer gemessenen Schwächungskorrektur untersucht. Im Anschluß erfolgte eine nicht schwächungskorrigierte MCD-Messung. Die MCD-Schnittbilder wurden zunächst ohne Kenntnis der DPET-Ergebnisse ausgewertet. In einem zweiten Schritt wurden die DPET-Bilder zur Befundung hinzugezogen. Ergebnisse: Die Phantomstudien ergaben eine vergleichbare räumliche Auflösung (DPET: 5,9 × 6,3 × 4,2 mm; MCD 5,9 × 6,5 × 6,0 mm). Im Vergleich zu DPET wies MCD eine geringere Systemsensitivität (91 cps/Bq/ml/cmFOv vs. 231 cps/Bq/ml/cmFOV) auf. Bei einem Herd-zu-Hintergrund-Quotienten von 4:1 konnte mittels DPET eine Kugel mit einem Durchmesser von 1,0 cm dargestellt werden, während die kleinste mit MCD abbildbare Kugel einen Durchmesser von 1,6 cm hatte. Mittels DPET waren 91 malignomtypische Herdbefunde bei 27 Patienten abgrenzbar. Ohne Kenntnis der DPET-Befunde konnten davon 72 mit MCD nachgewiesen werden (79,1%). Unter Zuhilfenahme der DPETBefunde wurden elf zusätzliche Herde abgrenzbar (+12%). Mit MCD wurden Herdbefunde bei sechs Patienten übersehen. Eine klinische Relevanz hinsichtlich Staging hätte sich hieraus bei zwei Patienten ergeben. Alle malignomtypischen Herdbefunde mit einem Durchmesser größer als 18 mm waren mit MCD nachweisbar. Schlußfolgerung: FDG-PET mit MCD ergibt zu DPET vergleichbare Ergebnisse bei der Mehrzahl der Patienten. Allerdings sind eine Reihe eindeutiger DPET-Befunde mit MCD allein nicht abgrenzbar. Daher kann MCD konventionelles PET derzeit nicht bei allen onkologischen FDG-Untersuchungen ersetzen. Weitere technische Verbesserungen dieser neuen Methode sind erforderlich, um die Bildqualität zu erhöhen (zum Beispiel Schwächungskorrektur).

 
  • REFERENCES

  • 1 Abdel-Dayem HM, Radin AI, Luo JQ. et al. Fluorine-18-fluorodeoxyglucose dual-head gamma camera coincidence imaging of recurrent colorectal carcinoma. J Nucl Med 1998; 39: 654-6.
  • 2 Bares R, Klever P, Hauptmann S. et al. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 1994; 192: 79-86.
  • 3 Bengel FM, Ziegler SI, Avril N. et al. Wholebody positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 1997; 24: 1091-8.
  • 4 Burt RW, Perkins OW, Oppenheim BE. Direct comparison of fluorine-18-FDG SPECT, fluorine-18-PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 1995; 36: 176-9.
  • 5 Cochavi S, Goldsmith SJ, Strashun A. et al. Planar imaging of positron emitting radionuclides with multicrystal camera. J Nucl Med 1982; 23: 722-30.
  • 6 Conti PS, Keppler JS, Halls JM. Positron emission tomography: a financial and operational analysis. Am J Roentgenol 1994; 162: 1279-86.
  • 7 Drane WE, Abbott FD, Nicole MW. et al. Technology for FDG SPECT with a relatively inexpensive gamma camera. Work in progress. Radiology 1994; 191: 461-5.
  • 8 Gambhir SS, Shepherd JE, Shah BD. et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol 1998; 16: 2113-25.
  • 9 Gupta NC, Frank AR, Dewan NA. et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1992; 184: 441-4.
  • 10 Hamberg LM, Hunter GJ, Alpert NM. et al. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification?. J Nucl Med 1994; 35: 1308-12.
  • 11 Hoeflin F, Lederman H. Noelpp, UB et al. Routine 18-F-2-deoxy-fluoro-D-glucose myocardial tomography using a large field of view gamma camera. Angiology 1989; 40: 1058-64.
  • 12 Höh CK, Glaspy J, Rosen P, Dahlbom M. et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med 1997; 38: 343-8.
  • 13 Holle LH, Trampert L, Lung-Kurt S. et al. Investigations of breast tumors with fluorine-18-fluorodeoxyglucose and SPECT. J Nucl Med 1996; 37: 615-22.
  • 14 Jarritt PH, Adams S. PET imaging using gamma camera systems: A rewiev. Nucl Med Commun 1996; 17: 758-66.
  • 15 Lapela M, Grenman R, Kurki T. et al. Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxy-D-glucose. Radiology 1995; 197: 205-11.
  • 16 Laubenbacher C, Saumweber D, Wagner-Manslau C. et al. Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 1995; 36: 1747-57.
  • 17 Macfarlane DJ, Cotton L, Ackermann RJ. et al. Triple-head SPECT with 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG): initial evaluation in oncology and comparison with FDG, PET. Radiology 1995; 194: 425-9.
  • 18 Martin WH, Delbeke D, Patton JA. et al. FDG-SPECT: correlation with FDG-PET. J Nucl Med 1995; 36: 988-95.
  • 19 Martin WH, Delbeke D, Patton JA. et al. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18]fluoro-2-deoxy-Dglucose. Radiology 1996; 198: 225-31.
  • 20 Muehllehner G. Positron camera with extended counting range capability. J Nucl Med 1975; 16: 653-7.
  • 21 Ogunbiyi OA, Flanagan FL, Dehdashti F. et al. Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol 1997; 4: 613-20.
  • 22 Reske SN, Bares R, Büll U. et al. Clinical value of positron emission tomography (PET) in oncologic questions: results of an interdisciplinary consensus conference. Nuklearmedizin 1996; 35: 42-52.
  • 23 Rinne D, Baum RP, Hör G. et al. Primary Staging and follow-up of high risk melanoma patients with whole-body 18F-fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer 1998; 82: 1664-71.
  • 24 Schwaiger M, Ziegler S. PET using a coincidence camera versus ring tomography, progress or recession?. Nuklearmedizin 1997; 36 Editorial.
  • 25 Shreve PD, Steventon RS, Deters EC. al. Oncologic diagnosis with 2-[fluorine-18] fluoro-2-deoxy-D-glucose imaging: dualhead coincidence gamma camera versus positron emission tomographic scanner. Radiology 1998; 207: 431-7.
  • 26 Steinert HC, Hauser M, Allemann F. et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative node mapping and sampling. Radiology 1997; 202: 441-6.
  • 27 Thill R, Neuerburg J, Fabry U. et al. Comparison of findings with 18-FDG PET and CT pretherapeutic staging of malignant lymphoma. Nuklearmedizin 1997; 36: 234-9.
  • 28 Trampert L, Holle LH, Berberich R. et al. 18FDG in the primary staging of lung tumors. keV collimator. Nuklearmedizin 1995; 34: 79-86.
  • 29 Worsley DF, Celler A, Adam MJ. et al. Pulmonary nodules: differential diagnosis using 18F-fluorodeoxyglucose single-photon emission computed tomography. Am J Roentgenol 1997; 168: 771-4.
  • 30 Zasadny KR, Kison PV, Quint LE. et al. Untreated lung cancer: quantification of systematic distortion of tumor size and shape on non-attenuation-corrected 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET scans. Radiology 1996; 201: 873-6.
  • 31 Ziegler S, Enterrottacher A, Boening G. et al. Untersuchung der Systemeigenschaften einer Doppelkopf-Koinzidenzkamera (abstract). Nuklearmedizin 1998; 37: A64.
  • 32 Zimny M, Schroeder W, Wolters S. et al. 18F-fluorodeoxyglucose PET in ovarian carcinoma: methodology and preliminary results. Nuklearmedizin 1997; 36: 228-33.