Vet Comp Orthop Traumatol 1992; 05(02): 80-84
DOI: 10.1055/s-0038-1633072
Original Research
Schattauer GmbH

A Bioabsorbable Polymer for Collateral Ligament Repair in the Pig

Nancy L. Korenek
3   Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, Largo, Florida, USA
,
C. S. Patton
3   Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, Largo, Florida, USA
,
R. F. McConnel
3   Consulting Pathology Services, Flemington, New Jersey, Largo, Florida, USA
,
R. Ross
4   Concepts Inc., Largo, Florida, USA
,
G. M. H. Shires
1   Department of Rural Practice
› Author Affiliations
Further Information

Publication History

Received for publication: 25 March 1991

Publication Date:
06 February 2018 (online)

Summary

A bioabsorbable internal fixation device of a poly-L-isomer of lactic acid (PLLA) was used to repair the proximal attachment of the medial femorotibial collateral ligament (MCL) in six miniature Yucatan pigs and compared with metal screw fixation in four pigs. Healing was evaluated by physical examination, gross dissection of surgical sites and histological evaluation of bone ligament interface. Chemical stress analysis of the tack was also evaluated.

The absorbable PLLA tack induced minimal tissue reaction and maintained sufficient apposition for healing of the MCL in the miniature Yucatan pigs. No postsurgical complications were noted in the experimental or control groups. All surgical implant procedures were considered successful in maintaining MCL apposition. This study suggests future potential for utilization of the PLLA tack for bioabsorbable implants in soft tissue or bone.

A bioabsorbable internal fixation device of a poly-L-isomer of lactic acid was used to repair the proximal attachment of the medial femorotibial collateral ligament in pigs, and compared with metal screw fixation. No postsurgical complications were noted in either group. All surgical implant procedures were successful. This study suggests future potential for utilization of the tack for bioabsorbable implants in soft tissue or bone.

 
  • REFERENCES

  • 1 Vert M, Christel P, Chabot F, Lersy L. Bioresorbable plastic materials for bone surgery. In: Macromolecular Biomaterials. Hastings GW, Ducheyne P. (eds). Boca Raton: CRC Press Inc; 1984: 120-42.
  • 2 Wehrenberg RH. Lactic acid polymers: strong degradable thermoplastics. Materials in Engineering 1981; 3: 63-6.
  • 3 Tunc DC. A high strength absorbable polymer for internal bone fixation. Trans Soc Biomaterials 1983; 6: 47.
  • 4 Törmälä P, Iarho I, Helvirta P, Rokkanen P, Vainionpää S, Botsman O, Kilpikari J. Resorbable surgical devices. Vth International Conference, Polymers in Medicine and Surgery. Leewenhorst/The Netherlands: September 1986
  • 5 Hollinger JO, Battistone GC. Biodegradable bone repair materials. Clin Orthop 1986; 207: 290-305.
  • 6 Claes L. The Mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity. J Orthop Res 1989; 7: 170-7.
  • 7 Simon RR, Woo SY, McCarty M, Lee S, Akason WH. Parametric study of bone remodeling beneath internal fixation plates of various stiffnesses. J Bioengineering 1978; 2: 543-56.
  • 8 Harrison JW, McClain DL, Hohn RB. et al. Osteosarcoma associated with metallic implants. Clin Orthop 1976; 116: 253-7.
  • 9 Stevenson S. Fractured associated sarcoma in the dog. JAVMA 1982; 18: 1189.
  • 10 Vasseur PB, Stevenson S. Osteosarcoma at the site of a cortical bone allograft in a dog. Vet Surg 1987; 16: 70-4.
  • 11 Leenslag JW, Pennings AJ, Ros RRM, Rozema FR, Boering G. Resorbable materials of poly (L-lactide) VII. In vivo and in vitro degradation. Biomaterials 1987; 8: 6-9.
  • 12 Cutwright DE, Perez B, Beasley JD, Larson WJ, Posey WR. Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. Oral Surgery 1974; 37: 142-52.
  • 13 Bos RRM, Boering G, Rozema FR, Leenslag JW, Verwaij AE, Penning SAJ. Body absorbable plates and screws of poly (Llactide) for fixation of zygomatic fractures. Deutsche Zeitschrift fur Mund, Kiefer und Gesichtschirurgie 1989; 13: 422-4.
  • 14 Axelson P, Räihä J, Sittnikow K. et al. The use of biodegradable implants in fixation of small animal cancellous bone fractures. Acta Vet Scand 1988; 29: 469-76.
  • 15 Axelson P, Makela A, Vanionpa A. Biodegradable implants in the fixation of physeal fractures in cats and dogs. Acta Vet Scand 1988; 29: 477-84.
  • 16 Räihä JE, Parchman M, Krook L, Vainionpää S, Mero M, Rokkanen P, Törmälä P. Fixation of trochanteric osteotomies in laboratory beagles with absorbable screws of polylactic acid. Vet Comp Orthop Trauma 1990; 3: 123-9.
  • 17 Botsman O, Makela EA, Törmälä P, Rokkanen P. Transphyseal fracture fixation using biodegradable pins. J Bone Joint Surg 1989; 71-B: 706-7.
  • 18 Axelson P, Räihä J, Sihnikow K, Skutnabb K. et al. The use of biodegradable implants in the fixation of small animal cancellous bone fractures. Acta Vet Scand 1988; 29: 469-76.
  • 19 Christel P, Chabot F, Leary JL, Morin C, Vert M. Biodegradable composites for internal fixation. In: Biomaterials. Winter JN, Gribbones DG, Plenk H. (eds). New York: John Wiley and Sons; 1982: 271.
  • 20 Chawla AS, Chang TMS. In-vivo degradation of poly (lactic acids) of different molecular weights. Biomaterials 1986; 13: 153-62.