Subscribe to RSS
DOI: 10.1055/s-0038-1633905
A Simulation Model for Small-area Cancer Incidence Rates
Publication History
Publication Date:
05 February 2018 (online)
Summary
Objectives: Cancer epidemiologists are often asked by members of the interested public about possible associations between suspected carcinogens and apparently increased small-area cancer incidence rates. Frequently, no systematic incidence differences can be demonstrated. Nevertheless, it is necessary to address public concerns about suspected cancer clusters. To facilitate explanations about the large random variation of small-area tumor incidence, we implemented a software simulation tool in R.
Methods: Under the assumption of no cancer causes other than chance, the tool simulates a small village population with an average number of five inhabitants per house and allows graphical visualisation of ten streets with 100 houses. Published age-specific incidence and mortality data are used for event sampling based on the binomial distribution. Program parameters include sample size, age distribution, cancer incidence, and mortality rates.
Results: On average, 22 percent (2.2/10) of all houses per street have been inhabited by at least one cancer patient during the last five years in our simulated small village. A situation where all (10) houses in a street have been inhabited by at least one cancer patient during the last five years appears to be very rare (less than one in a million streets).
Conclusions: Our software tool can be used effectively for numerical and graphical visualisation of small-area tumour incidence and prevalence rates due to chance alone. The explanation of basic epidemiological concepts to members of the public can help to increase public motivation and support for population-based cancer registration. Our simulation tool can be used to support this goal.
-
References
- 1 Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. J Comput Graph Stat 1996; 5: 299-314.
- 2 Bayerisches Landesamt für Statistik und Datenverarbeitung (Ed). Statistisches Jahrbuch für Bayern 2002. München 2002
- 3 Bayerisches Landesamt für Statistik und Datenverarbeitung (Ed.). Statistische Berichte – Altersstruktur der Bevölkerung Bayerns. München 2000-2002
- 4 European Network of Cancer Registries, EUCAN. Cancer Incidence, Mortality and Prevalence in the European Union (1998 estimates). Lyon 2004. Available from URL. http://www-dep.iarc.fr/HMP/CAMON.htm [accessed Mar 08, 2004]
- 5 Epidemiologisches Krebsregister Saarland. Interactive Database. Saarbrücken 2004. Available from URL. http://www.krebsregister.saarland.de/datenbank/datenbank.html [accessed Mar 08, 2004]
- 6 Berrino F, Capocaccia R, Estve J, Gatta G, Hakulinen T, Micheli A, Sant M, Verdecchia A. (ed.) Survival of Cancer Patients in Europe: The EUROCARE-2 Study. IARC Scientific Publications No. 151, Lyon. 1999
- 7 Carter KJ, Castro F, Kessler E, Erickson B. A CVomputer Model for the Study of Breast Cancer. Comput Biol Med 2003; 33 (04) 345-60.
- 8 Statistisches Bundesamt. Gesundheitsberichterstattung des Bundse – Informationssystem der Gesundheitsberichterstattung. Bonn 2004. Available from URL. http://www.gbe-bund.de [accessed Mar 08, 2004]
- 9 Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland (Ed.). Krebs in Deutschland - Häufigkeiten und Trends. Third edition, Saarbrücken 2002
- 10 Bayerisches Landesamt für Statistik und Datenverarbeitung (Ed.). Statistische Berichte - Die Gestorbenen in Bayern nach Todesursachen, Geschlecht und Altersgruppen. München 2002
- 11 Gawande A. The cancer-cluster myth. The New Yorker. 1999. February 8 34-7.
- 12 Potthoff RF, Whittinghill M. Testing for homogeneity II. The Poisson distribution. Biometrika 1966; 53: 183-90.
- 13 Tango T. A class of tests for detecting ‘general’ and ‘focused’clustering of rare diseases. Stat Med 1995; 14: 2323-34.
- 14 Tango T. A test for spatial disease clustering adjusted for multiple testing. Stat Med 2000; 19: 191-204.
- 15 Schinazi RB. The probability of a cancer cluster due to chance alone. Stat Med 2000; 19: 2195-8.
- 16 Bevölkerungsbezogenes Krebsregister Bayern. SACS – Small-Area Cancer Simulation. Erlangen 2004. Available from URL. http://www.krebsregister-bayern.de/links.html#software [accessed June 22, 2004]