Methods Inf Med 1999; 38(03): 207-213
DOI: 10.1055/s-0038-1634184
Original Article
Schattauer GmbH

Quantifying Stenosis in Renal Arteriograms: A Fuzzy Syntactic Analysis

A. Lalande
1   Laboratoire de Biophysique, Faculté de Médecine, Université de Bourgogne, Dijon France
,
M.C. Jaulent
2   Service d’Informatique Médicale, Hôpital Broussais, Paris, France
,
I. Cherrak
2   Service d’Informatique Médicale, Hôpital Broussais, Paris, France
,
F. Brunotte
1   Laboratoire de Biophysique, Faculté de Médecine, Université de Bourgogne, Dijon France
,
P. Degoulet
2   Service d’Informatique Médicale, Hôpital Broussais, Paris, France
› Author Affiliations
Further Information

Publication History

Publication Date:
08 February 2018 (online)

Abstract

The introduction of fuzzy logic improves a system for the automatic quantification of renal artery lesions seen in digital subtraction angiograms. A two-step approach has been followed. An earlier system based on non-fuzzy syntactic analysis provided a clear symbolic description of the stenotic lesions. Although this system worked correctly, it did not take into account the variability and uncertainty inherent to image processing and to knowledge on the reference diameter. This system has been improved by the introduction of fuzzy logic in the representation of the reference diameter. It provides a description of the stenosis in terms of fuzzy quantities. To illustrate the benefits of the fuzzy approach, the results of the two systems have been compared by plotting the differences of an index of variability. It appears that the differences are statistically different when using a two-tailed paired t-test (t = 2.37; p = 0.025). The result shows that the fuzzy approach is better than a non-fuzzy approach in the sense that the index of variability is reduced significantly.

 
  • References

  • 1 Herrman JPR, Azar A, Umans VAWM, Boersma E, Es GAV, Serruys PW. Inter-and intra-observer variability in the qualitative categorization of coronary angiograms. Int J Cardiac Imag 1996; 12: 21-30.
  • 2 Plouin Pf, Darné B, Chatellier G. et al. Restenosis after a first percutaneous transluminal renal angioplasty. Hypertension 1993; 21: 89-96.
  • 3 Dumay A, Gerbrands J, Reiber H. Automated extraction, labelling and analysis of the coronary vasculature from arteriograms. Int J Cardiac Imag 1994; 10: 205-15.
  • 4 Wunderlich W, Linderer T, Backs B, Fischer F, Schröder R. Optimum edge detection in quantitative coronary arteriography. In: Lemke HU, Inamura K, Jaffe CC, Felix R. eds. Proc of CAR‘93. Heidelberg: Springer-Verlag; 1993: 303-8.
  • 5 Gronenschild E, Janssen J. A compact system for quantitative cardio vascular angiography analysis. Lun KC. et al. eds MEDINFO ’92. North Holland: Elsevier Science Publishers B.V.; 1992: 795-800.
  • 6 Jaulent MC, Paul JF, Boittin P, Degoulet P. Description and representation of segmented renal arteries from angiograms. In: Seventeenth annual symposium on computer applications in medical care. 1993: 818-23.
  • 7 Lalande A, Jaulent MC. A fuzzy automaton to detect and quantify artery lesions from arteriograms. In: Proceedings of the 6th International Conference IPMU ’96. July 1996. Granada, Espana: 1481-7.
  • 8 Reiber JHC, Cornelis JK, Cornelis JS. et al. Coronary Artery Dimensions from Cineangiograms - Methodology and Validation of a Computer Assisted Analysis Procedure. IEEE Trans. on Medical Imaging. 1984; 3 (Suppl. 03) 131-41.
  • 9 Thomason MG. Finite Fuzzy Automata, Regular Fuzzy Languages, and Pattern Recognition. Pattern Recognition. 1973; 5: 383-90.
  • 10 Dubois D, Prade H. Théorie des possibilités. Applications à la représentation des connaissances en informatique. Masson; 1985
  • 11 Bland M, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1988; 1: 307-10.
  • 12 Lee ET. Fuzzy Tree Automata and Syntactic Pattern Recognition. IEEE Trans. Pattern Anal Machine Intell 1982; 4 (Suppl. 04) 445-9.
  • 13 Pathak A, Pal SK. Fuzzy grammars in syntactic recognition of skeletal maturity from X-rays. IEEE Trans Syst Man Cybern 1986; 16 (Suppl. 05) 657-67.
  • 14 Steimann F, Adlassnig KP. Clinical monitoring with fuzzy automata. Fuzzy Sets and Systems. 1993; 61: 37-42.
  • 15 Wee WG, Fu KS. A Formulation of Fuzzy Automata and its Application as a model of Learning Systems. IEEE Trans Syst Sci & Cybern 1969; 5: 215-23.
  • 16 Santos ES, Wee WG. General Formulation of Sequential Machines. Information and Control 1968; 12: 5-10.
  • 17 Virant J, Zimic N. Fuzzy Automata with Fuzzy relief. IEEE Trans on Fuzzy Systems 1995; 3 (Suppl. 01) 69-74.