Methods Inf Med 2002; 41(05): 443-450
DOI: 10.1055/s-0038-1634217
Original Article
Schattauer GmbH

Cortical Source Estimate of Combined High Resolution EEG and fMRI Data Related to Voluntary Movements

F. Babiloni
1   Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza”, Roma, Italy
,
C. Babiloni
1   Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza”, Roma, Italy
4   AFaR and CRCCS Ospedale Fatebenefratelli, Isola Tiberina, Roma, Italy
,
F. Carducci
1   Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza”, Roma, Italy
4   AFaR and CRCCS Ospedale Fatebenefratelli, Isola Tiberina, Roma, Italy
,
Del C. Gratta
2   Dipartimento di Scienze Cliniche e Bioimmagini and Istituto di Tecnologie Avanzate Biomediche, Università “G. D’Annunzio”, Chieti, Italy
7   Istituto Nazionale di Fisica della Materia, UdR L’Aquila, Italy
,
G. L. Romani
2   Dipartimento di Scienze Cliniche e Bioimmagini and Istituto di Tecnologie Avanzate Biomediche, Università “G. D’Annunzio”, Chieti, Italy
7   Istituto Nazionale di Fisica della Materia, UdR L’Aquila, Italy
,
P. M. Rossini
3   IRCCS “San Giovanni di Dio”, Istituto Sacro Cuore di Gesù, Brescia, Italy
,
F. Cincotti
6   IRCCS Fondazione Santa Lucia, Roma, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2018 (online)

Summary

Objectives: In this paper, we employed advanced methods for the modeling of human cortical activity related to voluntary right one-digit movements from combined high-resolution electroencephalography (EEG) and functional magnetic resonance imaging (fMRI).

Methods: Multimodal integration between EEG and fMRI data was performed by using realistic head models, a large number of scalp electrodes (128) and the estimation of current density strengths by linear inverse estimation.

Results: Increasing of spatial details of the estimated cortical density distributions has been detected by using the proposed integration method with respect to the estimation using EEG data alone.

Conclusion: The proposed method of multimodal EEG-fMRI data is useful to increase spatial resolution of movement-related potentials and can also be applied to other kinds of event-related potentials.

 
  • REFERENCES

  • 1 Scherg M, von Cramon D, Elton M. Brain-stem auditory-evoked potentials in post-comatose patients after severe closed head trauma. J Neurol 1984; 231 (Suppl. 01) 1-5.
  • 2 Carlson S, Martinkauppi S, Rama P, Salli E, Korvenoia A, Aronen H. Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex 1998; 8: 743-52.
  • 3 Dale AM, Sereno M. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Cognitive Neuroscience 1993; Volume 5: 162-76.
  • 4 Pascual Marqui RD, Michel CM, Lehmann D. “Low resolution electromagnetic tomography: a new method for localizing electrical activity of the brain”. Int Journ Psychophysiology 1994; 18: 49-65.
  • 5 Grave de Peralta Menendez R, Gonzalez Andino SL. Distributed source models: standard solutions and new developments. In: Analysis of neurophysiological brain functioning. Uhl C. (ed). Springer Verlag; 1998. pp. 176-201.
  • 6 Babiloni F, Carducci F, Cincotti F, Del Gratta C, Roberti GM, Romani GL, Rossini PM, Babiloni C. Integration of High Resolution EEG and Functional Magnetic Resonance in the Study of Human Movement-Related Potentials. Methods of Information in Medicine 2000; 39 (Suppl. 02) 179-82.
  • 7 Dale A, Liu A, Fischl B, Buckner R, Belliveau JW, Lewine J, Halgren E. Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity. Neuron 2000; 26: 55-67.
  • 8 Meijs J, Weier O, Peters M, van Oosterom A. On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 1989; 36 (Suppl. 10) 1038-49.
  • 9 Yvert B, Bertrand O, Echallier JF, Pernier J. Improved forward EEG calculations using local mesh refinement of realistic head geometries, Electroencephalogr Clin Neurophysiol. 1995; 95 (Suppl. 05) 381-92.
  • 10 Hämäläinen M, Ilmoniemi R. Interpreting measured magnetic field of the brain: Estimates of the current distributions. Technical report TKK-F-A559, Helsinki University of Technology; 1984
  • 11 Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. PNAS 1998; 95: 15. pp. 8945-50.
  • 12 Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RB, Aronen HJ, Ilmoniemi RJ. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. Journal of Neurophysiology 1999; 82 (Suppl. 05) 2545-55.
  • 13 Liu AK. Spatiotemporal brain imaging, PhD dissertation. Massachusetts Institute of Technology; Cambridge: MA. 2000
  • 14 Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999; 283 5401 496-7.
  • 15 Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986; 324 6095 361-4.
  • 16 Puce A, Allison T, Spencer SS, Spencer DD, McCarthy G. Comparison of cortical activation evoked by faces measured by intracranial field potentials and functional MRI: two case studies. Hum Brain Mapp 1997; 5 (Suppl. 04) 298-305.
  • 17 Singh KD, Holliday IE, Furlong PL, Harding GFA. Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation. 1996 pp. 81-85.
  • 18 Hansen PC. Regularization tools, a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 1994; 6: 1-35.
  • 19 Lange N. Statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat Med 19 Feb 28, 1996; 15 (Suppl. 04) 389-428.
  • 20 Vanier M, Lecours AR, Ethier R, Habib M, Poncet M, Milette PC, Salamon G. Proportional localization system for anatomical interpretation of cerebral computed tomograms. J Comput Assist Tomogr 1985; 9 (Suppl. 04) 715-24.
  • 21 Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT. “Automated Talairach Atlas labels for functional brain mapping”. Human Brain Mapping 2000; 10: 120-31.
  • 22 Babiloni F, Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, Tecchio F, Babiloni C. Linear inverse source estimate of combined EEG and MEG data related to voluntary movements. Human Brain Mapping 2001; 14 (Suppl. 03) 197-209.
  • 23 Nunez PL, Silberstein R. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense?. Brain Topogr Winter 2000; 13 (Suppl. 02) 79-96.
  • 24 Sanders JA, Lewine JD, Orrison WW. Comparison of primary motor localization using functional magnetic resonance imaging and magnetoencephalography. Human Brain Mapping 1996; 4: 47-57.
  • 25 Beisteiner R, Erdler M, Teichtmeister C, Diemling M, Moser E, Edward V, Deecke L. Magnetoencephalography may help to improve functional MRI brain mapping. European Journal of Neuroscience 1997; 9 (Suppl. 05) 1072-7.
  • 26 Korvenoja A, Huttunen J, Salli E, Pohjonen H, Martinkauppi S, Palva JM, Lauronen L, Virtanen J, Ilmoniemi RJ, Aronen HJ. Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Human Brain Mapping 1999; 8 (Suppl. 01) 13-27.
  • 27 Baillet S, Leahy R, Singh M, Shattuck D, Mosher J. Supplementary Motor Area Activation Preceding Voluntary Finger Movements as Evidenced by Magnetoencephalography and fMRI. International Journal of Bioelectromagnetism; 2001. vol 1 (3).
  • 28 Ioannides AA, Liu MJ, Liu LC, Bamidis PD, Hellstrand E, Stephan KM. Magnetic field tomography of cortical and deep processes: examples of “real-time mapping” of averaged and single trial MEG signals. Int J Psychophysiol 1995; 20 (Suppl. 03) 161-75.