Methods Inf Med 2003; 42(02): 126-133
DOI: 10.1055/s-0038-1634323
Original article
Schattauer GmbH

Informatics United

Exemplary Studies Combining Medical Informatics, Neuroinformatics and Bioinformatics
J. Wiemer
1   Intelligent Bioinformatics Systems, German Cancer Research Center, Heidelberg, Germany
2   Phase-it Intelligent Solutions AG, Heidelberg, Germany
,
F. Schubert
1   Intelligent Bioinformatics Systems, German Cancer Research Center, Heidelberg, Germany
,
M. Granzow
1   Intelligent Bioinformatics Systems, German Cancer Research Center, Heidelberg, Germany
2   Phase-it Intelligent Solutions AG, Heidelberg, Germany
,
T. Ragg*
2   Phase-it Intelligent Solutions AG, Heidelberg, Germany
,
J. Fieres
2   Phase-it Intelligent Solutions AG, Heidelberg, Germany
,
J. Mattes
1   Intelligent Bioinformatics Systems, German Cancer Research Center, Heidelberg, Germany
,
R. Eils
1   Intelligent Bioinformatics Systems, German Cancer Research Center, Heidelberg, Germany
2   Phase-it Intelligent Solutions AG, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
08 February 2018 (online)

Summary

Objectives: Medical informatics, neuroinformatics and bioinformatics provide a wide spectrum of research. Here, we show the great potential of synergies between these research areas on the basis of four exemplary studies where techniques are transferred from one of the disciplines to the other.

Methods: Reviewing and analyzing exemplary and specific projects at the intersection of medical informatics, neuroinformatics, and bioinformatics from our experience in an interdisciplinary research group. Results: Synergy emerges when techniques and solutions from medical informatics, bioinformatics, or neuroinformatics are successfully applied in one of the other disciplines. Synergy was found in 1. the modeling of neurophysiological systems for medical therapy development, 2. the use of image processing techniques from medical computer vision for the analysis of the dynamics of cell nuclei, and 3. the application of neuroinformatics tools for data mining in bioinformatics and as classifiers in clinical oncology. Conclusions: Each of the three different disciplines have delivered technologies that are readily applicable in the other disciplines. The mutual transfer of knowledge and techniques proved to increase efficiency and accuracy in a manifold of applications. In particular, we expect that clinical decision support systems based on techniques derived from neuro- and bioinformatics have the potential to improve medical diagnostics and will finally lead to a personalized delivery of healthcare.

* current address: Dr. T. Ragg, Quantiom bioinformatics, 76356 Weingarten, Germany


 
  • References

  • 1 Stead WW. The challenge of bridging between disciplines. J Am Med Inform Assoc 2001; 8 (Suppl. 01) 105.
  • 2 van Bemmel JH, Musen MA. editors. Handbook of medical informatics. Springer; 1997
  • 3 Beltrame F, Koslow SH. Neuroinformatics as a megascience issue. IEEE Trans Inf Technol Biomed 1999; 3 (Suppl. 03) 239-40.
  • 4 Seelen Wv, Wiemer JC. editors. Research Report April 2001. Bochum: Institut für Neuroinformatik, Ruhr-Universität Bochum; 2001. www.neuroinformatik.ruhr-uni-bochum.de/thbio/publications/index.html
  • 5 Haykin SS. Neural Networks: A Comprehensive Foundation. Prentice Hall: 1998
  • 6 Bishop CM. Neural networks for pattern recognition. Oxford Press; 1995
  • 7 McCulloch WS, Pitts W. A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 1943; 5: 115-33.
  • 8 Bayat A. Science, medicine, and the future: Bioinformatics. BMJ 2002; 324 7344 1018-22.
  • 9 Penfield W, Rasmussen T. The cerebral cortex of man: a clinical study of localization of cortical function. New York: Macmillan; 1950
  • 10 Kandel ER, Schwartz JH, Jessell TM. editors. Principles of neural science. 3 edition McGraw-Hill Professional Publishing; 1996
  • 11 Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 1983; 8 (Suppl. 01) 33-55.
  • 12 Kohonen T. Self-organizing maps. Berlin, Heidelberg, New York: Springer; 2001
  • 13 Wiemer J. Learning topography in neural networks: towards a better understanding of cortical topography. Shaker Verlag; Aachen: 2001
  • 14 Garraghty PE, Kaas JH. Dynamic features of sensory and motor maps. Curr Opin Neurobiol 1992; 2: 522-7.
  • 15 Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482-4.
  • 16 Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI. et al. Functional analysis of primary visual cortex in humans. Proc Natl Acad Sci 1998; 95 (Suppl. 03) 818-24.
  • 17 Kim DS, Duong TQ, Kim SG. High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 2000; 3: 164-9.
  • 18 Wiemer J, Spengler F, Joublin F, Stagge P, Wacquant S. Learning cortical topography from spatiotemporal stimuli. Biol Cybern 2000; 82 (Suppl. 02) 173-87.
  • 19 Wessendorf S, Lichter P, Schwanen C, Fritz B, Baudis M, Walenta K. et al. Potential of chromosomal and matrix-based comparative genomic hybridization for molecular diagnostics in lymphomas. Ann Hematol 2001; 80 Suppl 3 B35-7.
  • 20 Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M. et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319 (Suppl. 09) 525-32.
  • 21 du Manoir S, Speicher MR, Joos S, Schrock E, Popp S, Dohner H. et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 1993; 90 (Suppl. 06) 590-610.
  • 22 Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F. et al. Comparative genomic hybridization for molecular cyto-genetic analysis of solid tumors. Science 1992; 258 5083 818-21.
  • 23 Dougherty ER, Barrera J, Brun M, Kim S, Cesar RM, Chen Y. et al. Inference from clustering with application to gene-expression microarrays. J Comput Biol 2002; 9 (Suppl. 01) 105-26.
  • 24 Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 1999; 96 (Suppl. 06) 2907-12.
  • 25 Granzow M, Berrar D, Dubitzky W, Schuster A, Azuaje F, Eils R. Tumor classification by gene expression profiling: comparison and validation of five clustering methods. SIGBIO Newsletter Special Interest Group on Biomedical Computing of the ACM 2001; 21 (Suppl. 01) 16-22.
  • 26 Fritz B, Schubert F, Wrobel G, Schwaenen C, Wessendorf S, Nessling M. et al. Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 2002; 62 (Suppl. 11) 2993-8.
  • 27 Stilgenbauer S, Bullinger L, Lichter P, Dohner H. Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia 2002; 16 (Suppl. 06) 993-1007.
  • 28 van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415 6871 530-6.
  • 29 Cover TM, Thomas JA. Elements of information theory. John Wiley & Sons; 1991
  • 30 Ragg T, Menzel W, Baum W, Wigbers M. Bayesian learning for sales rate prediction for thousands of retailers. Neurocomputing 2002; 43: 127-44.
  • 31 MacKay D. The Evidence Framework Applied to Classification Networks. Neural Computation 1992; 4 (Suppl. 05) 698-714.
  • 32 Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer; 2001
  • 33 Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Kaufmann M. et al. From occult residual cells to overt metastasis: Genetic evolution of single disseminated breast cancer cells. (submitted)
  • 34 Niessen WJ, Viergever MA. editors. MICCAI 2001: Medical image computing and computer-assisted intervention. Springer; 2001
  • 35 Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongeot J, de Rougemont J. Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results. Appl Neurophysiol 1987; 50 1-6 153-4.
  • 36 Tvarusko W, Bentele M, Misteli T, Rudolf R, Kaether C, Spector DL. et al. Time-resolved analysis and visualization of dynamic processes in living cells. Proc Natl Acad Sci USA 1999; 96 (Suppl. 14) 7950-5.
  • 37 Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108 (Suppl. 01) 83-96.
  • 38 Mattes J, Fieres J, Eils R. A shape adapted motion model for non-rigid registration. In: SPIE Medical Imaging 2002: Image Processing. 2002. San Diego: 2002. p. 518-27.
  • 39 Miller PL. Opportunities at the intersection of bioinformatics and health informatics: a case study. J Am Med Inform Assoc 2000; 7 (Suppl. 05) 431-8.
  • 40 Altman RB. The interactions between clinical informatics and bioinformatics: a case study. J Am Med Inform Assoc 2000; 7 (Suppl. 05) 439-43.
  • 41 Kohane IS. Bioinformatics and clinical informatics: the imperative to collaborate. J Am Med Inform Assoc 2000; 7 (Suppl. 05) 512-6.
  • 42 Martin-Sanchez F, Maojo V, Lopez-Campos G. Integrating genomics into health information systems. Methods Inf Med 2002; 41 (Suppl. 01) 25-30.