Methods Inf Med 2000; 39(04/05): 332-338
DOI: 10.1055/s-0038-1634451
Original Article
Schattauer GmbH

Computer Simulation of Hemodynamic Parameter Changes by Mechanical Ventilation and Biventricular Circulatory Support

M. Darowski
1   Institute of Biocybernetics and Biomedical Engineering PAN, Warsaw, Poland
,
De C. Lazzari
2   CNR, Istituto di Tecnologie Biomediche, Rome, Italy
,
G. Ferrari
2   CNR, Istituto di Tecnologie Biomediche, Rome, Italy
,
F. Clemente
2   CNR, Istituto di Tecnologie Biomediche, Rome, Italy
,
M. Guaragno
2   CNR, Istituto di Tecnologie Biomediche, Rome, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
08 February 2018 (online)

Abstract:

When a Bi-Ventricular Assist Device (BVAD) is used in conjunction with mechanical ventilation (MV) of the lungs with positive intrathoracic pressure (Pt), the latter influences hemodynamics. The aim of our study was to assess the simultaneous influence of BVAD and MV on hemodynamics. We assumed ventricular pathological conditions as reduced elastances and increased rest volumes. Peripheral systemic arterial resistance was assumed to have different values. Data were obtained by computer simulation. Trends in main hemodynamic variables were compared with clinical data from literature. Simulation showed that systemic venous, pulmonary arterial and left atrial pressures are very sensitive to Pt (-2 to 5 mmHg).

 
  • REFERENCES

  • 1 Nose Y, Ohtsubo S, Tayama E. Therapeutic and physiological artificial heart: future prospects. Artificial Organs 1997; 21: 592-6.
  • 2 Quaini E, Pavie A, Chieco S, Mambrito A. The Concerted Action ‘Heart’ European registry on clinical application of mechanical circulatory support system: bridge to transplant. The Registry Scientific Committee. Eur J Cardiothorac Surg 1997; 11: 182-8.
  • 3 Okumura H. Experimental study of optimal driving mode in biventricular assist device. Nippon Kyobu Geka Gakkai Zasshi 1991; 39: 174-82.
  • 4 Nakatani T, Takano H, Noda H, Taenaka Y, Umezu M, Kinoshita M, Fukuda S, Matsuda T, Iwata H, Takatani S. et al. Prerequisites to salvage profound biventricular failure patients with ventricular assist devices. Int J Artif Organs 1989; 12: 234-41.
  • 5 Farrar DJ, Chow E, Wood J, Hill JD. Comparison of right ventricular and biventricular circulatory support in a porcine model of right heart failure. ASAIO Trans 1990; 36: M522-5.
  • 6 Loebe M, Gorman K, Burger R, Gage JE, Harke C, Hetzer R. Complement activation in patients undergoing mechanical circula-tory support. ASAIO J 1998; 44: M340-6.
  • 7 Hall AW, Soykan O, Harken AH. Physiologic control of cardiac assist devices. Artificial Organs 1996; 20: 271-5.
  • 8 Rankin JS, Olsen CO, Arentzen CE, Tyson GS, Maier G, Smith PK, Hammon JW, Davis JW, McHale PA, Anderson RW, Sabiston DC. The effects of airway pressure on cardiac function in intact dogs and man. Circulation 1982; 66: 108-20.
  • 9 Fewell JE, Abendschein DR, Carlson CJ, Murray JF, Rapaport E. Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res 1980; 46: 125-32.
  • 10 Pinsky MR. The effects of mechanical ventilation on the cardiovascular system. Critical Care Clinics 1990; 6: 663-77.
  • 11 Lloyd TC. Mechanical cardiopulmonary interdependence. J Appl Physiol 1982; 52: 333-9.
  • 12 Miro AM, Pinsky MR. Heart-lung interactions. In: Tobin MJ. ed. Principles and practice of mechanical ventilation. New York: McGraw-Hill, Inc; 1994: 647-71.
  • 13 Fessler HE. Heart-lung interactions: applications in the critically ill. Eur Resp J 1997; 10: 226-37.
  • 14 De Lazzari C, Ferrari G, Mimmo R, Tosti G, Ambrosi D. A desk-top computer model of the circulatory system for heart assistance simulation: effect of an LVAD on energetic relationships inside the left ventricle. Med Eng Phys 1994; 16: 97-103.
  • 15 Guyton AC, Jones CE, Coleman TG. Computer analysis of total circulatory function and of cardiac output regulation. In: Circula-tory Physiology: Cardiac Output and its Regulation. Philadelphia: WB Saunders Company; 1973
  • 16 Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac contraction and the Pressure-Volume relationships. New York: Oxford University Press; 1988
  • 17 Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure volume relation. Circ Res 1989; 64: 827-52.
  • 18 Ferrari G, De Lazzari C, Mimmo R, Tosti G, Ambrosi D. A modular numerical model of the cardiovascular system for studying and training in the field of cardiovascular physio-pathology. J Biomed Eng 1992; 14: 91-107.
  • 19 Nakatani S, Thomas JD, Savage RM, Vargo RL, Smedira NG, McCarthy PM. Prediction of right ventricular dysfunction after left ventricular assist device implantation. Circulation 1996; 94 (suppl II): II: 216-21.
  • 20 Morita S, Kormos RL, Mandarino WA, Eishi K, Kawai A, Gasior TA, Deneault LG, Armitage JM, Hardesty RL, Griffith BP. Right ventricular/arterial coupling in the patient with left ventricular assistance. Circulation 1992; 86 (suppl II): II: 316-25.
  • 21 Smedira NG, Massad NG, Navia J, Vargo RL, Patel AN, Cook DJ, McCarthy PM. Pulmonary hypertension is not a risk factor for RVAD use and death after left ventricular assist system support. ASAIO J 1996; 42: M733-5.
  • 22 Bai J, Lu H, Zhang J, Zhou X. Simulation study of the interaction between respiration and the cardiovascular system. Method Inform Med 1997; 36: 261-3.