Methods Inf Med 1998; 37(04/05): 491-500
DOI: 10.1055/s-0038-1634548
Original Article
Schattauer GmbH

Cooperative Knowledge Evolution: A Construction-Integration Approach to Knowledge Discovery in Medicine

F. J. Schmalhofer
1   German Research Center for Artificial Intelligence, Kaiserslautern, Germany
,
B. Tschaitschian
1   German Research Center for Artificial Intelligence, Kaiserslautern, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
15 February 2018 (online)

Abstract

In this paper, we perform a cognitive analysis of knowledge discovery processes. As a result of this analysis, the construction-integration theory is proposed as a general framework for developing cooperative knowledge evolution systems. We thus suggest that for the acquisition of new domain knowledge in medicine, one should first construct pluralistic views on a given topic which may contain inconsistencies as well as redundancies. Only thereafter does this knowledge become consolidated into a situation-specific circumscription and the early inconsistencies become eliminated. As a proof for the viability of such knowledge acquisition processes in medicine, we present the IDEAS system, which can be used for the intelligent documentation of adverse events in clinical studies. This system provides a better documentation of the side-effects of medical drugs. Thereby, knowledge evolution occurs by achieving consistent explanations in increasingly larger contexts (i.e., more cases and more pharmaceutical substrates). Finally, it is shown how prototypes, model-based approaches and cooperative knowledge evolution systems can be distinguished as different classes of knowledge-based systems.

 
  • REFERENCES

  • 1 Musen M. Dimensions of Knowledge Sharing and Reuse. Computers and Biomedical Research 1995; 25: 435-67.
  • 2 Musen MA, Wieckert KE, Miller ET, Campbell KE, Fagan LM. Development of a Controlled Medical Terminology: Knowledge Acquisition and Knowledge Representation. Meth Inform Med 1994; 34: 85-95.
  • 3 Schmalhofer F. Constructive Knowledge Acquisition: A Computational Model and Experimental Evaluation. Mawah, NJ: Lawrence Erlbaum Associates; 1998
  • 4 Abecker A, Boley H, Hinkeimann K, Wache H, Schmalhofer F. An Environment for Exploring and Validating Declarative Knowledge. In: Proceedings of the Workshop on Logic Programming Environments at ILPS'95. Portland, Oregon: 1995
  • 5 Kintsch W. The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review 1998; 95: 163-82.
  • 6 Kintsch W. A cognitive architecture for comprehension. In: Pick H, van den Broek P, Knill D. eds. The study of cognition: Conceptual and methodological issues. Washington, DC: APA Press; 1992: 143-64.
  • 7 Shortliffe EH. Computer-Based Medical Consultations: MYCIN. Elsevier/North Holland, New York: 1976
  • 8 Steels L. Components of Expertise. AI Magazine 1990; 11 (2) 28-49.
  • 9 Wielinga BJ, Schreiber ATh, Breuker JA. KADS: A modelling approach to knowledge engineering. Knowledge Acquisition Journal 1992; 4: 5-53.
  • 10 Fischer G, McCall R, Ostwald J, Reeves B, Shipman F. Seeding, evolutionary growth and reseeding: Supporting the incremental development of design environments. In: CHI'94 Conference Proceedings. Reading, MA: Addison-Wesley; 1994: 292-8.
  • 11 Kiihn O, Abecker A. Building a Corporate Memory: Experiences from Three Case Studies. In: Wolf M, Reimer U. eds. Proceedings of the First International Conference on Practical Aspects of Knowledge Management. Basel, Switzerland; October 30-31 1996
  • 12 Schmalhofer F, Tschaitschian B. Cooperative knowledge evolution for complex domains. In: Tecuci G, Kodratoff Y. eds. Machine Learning and Knowledge Acquisition: Integrated Approaches. Academic Press, London 1995; 145-66.
  • 13 Birk A, Tschaitschian B, Schmalhofer F, Thuering M, Gertzen H. Architecture and User-Interface of the IDEAS Intelligent Documentation System. In: Schuler W, Hannemann J, Streitz N. eds. Designing User Interfaces for Hypermedia. Berlin: Springer; 1995: 79-94.
  • 14 Tschaitschian B, Schmalhofer F, Schmidt J, Gertzen H, Aschenbrenner M. Intelligent documentation of adverse events by explanation-based abstraction. In: Lavrac N, Keravnou E, Zupan B. eds. ECAI-96 Workshop Notes. Budapest: 1996
  • 15 Schmalhofer F, Kiihn O. Acquiring computer skills by exploration versus demonstration. In: The Tenth Annual Conference of the Cognitive Science Society. Hillsdale, NH: Lawrence Erlbaum Associates; 1998: 724-30.
  • 16 Baud RH, Rassinoux AM, Scherrer JR. Natural language processing and semantical representation of medical texts. Meth Inform Med 1992; 31: 117-25.
  • 17 Newell A. The knowledge level. Artificial Intelligence 1982; 18: 87-127.
  • 18 Schmalhofer F, Aitken S, Bourne LE. Beyond the knowledge level; Descriptions of rational behavior for sharing and reuse. In: Steels L, Schreiber G, an de Velde WV. eds. A Future for Knowledge Acquistion, EKAW '94 Proceedings. Berlin: Springer; 1994: 83103.
  • 19 Mannes S, Kintsch W. Routine computing tasks: Planning as understanding. Cognitive Science 1991; 15: 305-42.
  • 20 Doane SM, Kintsch W, Poison P. Action planning: Producing UNIX commands. In: Proceedings of the Eleventh Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates; 1989: 458-65.
  • 21 Kilajima M, Poison PG. A comprehension-based model of correct performance and errors in skilled, display-based, human-computer interaction. International Journal of Human-Computer Studies 1995; 43: 65-99.
  • 22 Breuker JA, Wielinga WJ. Model driven knowledge acquisition. In: Guida P, Tasso G. eds. Topics in the design of expert systems. Amsterdam, North-Holland: Elsevier; 1989: 265-96.
  • 23 Patel VL, Evans DA, Groen G. Reconciling basic science and clinical reasoning. Teaching and Learning in Medicine 1989; 1: 116-21.
  • 24 Schmalhofer F, Franken L, Schwerdtner J. A computer tool for constructing and integrating inferences into text representations Behavior Research Methods. Computers & Instrumentation 1997; 2: 204-9.
  • 25 DeJong G, Mooney R. Explanation-based learning: An alternative view. Machine Learning 1986; 1: 145-76.
  • 26 Boy G. Agent-oriented interaction in cooperative computer-based training systems. In: Lesgold A, Schmalhofer F. eds. Expen- and Tutoring Systems as Media for Embodying and Sharing Knowledge. Dagstuhl-Seminar-Report 9431. IBFI GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany; 1994: 8.
  • 27 De Jong G. Investigating Explanation-Based Learning. Kluwer Academic, Boston: 1993
  • 28 Schmalhofer F, Bergmann R, Boschert St, Thoben J. Learning Program Abstractions: Model and Empirical Validation, 203-231. In: Strube G, Wender KF. eds. The Cognitive Psychology of Knowledge. Elsevier, Amsterdam; 1993
  • 29 Bergmann R, Wilke W. Learning Abstract Planning Cases, 55-76. Proceedings of the Stli European Conference on Machine Learning (ECML-95). Berlin: Springer; 1995
  • 30 Schmalhofer F, Tschaitschian B. The acquisition of a procedure schema from text and experiences. In: Proceedings of the 15th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates; 1993: 883-8.
  • 31 Patel VL, Evans DA, Chawla A. Predictive versus diagnostic reasoning in the application of biomedical knowledge. In: Proceedings of the 9th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates; 1987: 221-33.
  • 32 Schmalhofer F, Müsch J, Aschenbrenner KM, Gertzen H, Schmidt J. Decision support for the judgement of adverse events in clinical trials. In: Proceedings of the Circuits. Systems and Computers '96 International Conference, vol 2, Hellenic Naval Academy. Piraeus, Greece; July 15-17 1996
  • 33 Schmalhofer F, van Eist L. Entwicklung von Expertensystemen: Prototypen, Tiefenmodellierung und kooperative Wissensevolution. In: Dzida W, Konradt U. eds. Psychologie des Software-Entwurfs. Verlag für angewandte Psychologie, Göttingen; 1995