J Knee Surg 2018; 31(07): 610-617
DOI: 10.1055/s-0038-1636546
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

A Modern Approach to Preventing Prosthetic Joint Infections

Paraskevi Vivian Papas
1   Department of Orthopedic Surgery, Northwell Health—Lenox Hill Hospital, New York, New York
,
Dominick Congiusta
2   Rutgers New Jersey Medical School, Newark, New Jersey
,
Giles R. Scuderi
1   Department of Orthopedic Surgery, Northwell Health—Lenox Hill Hospital, New York, New York
,
Fred D. Cushner
1   Department of Orthopedic Surgery, Northwell Health—Lenox Hill Hospital, New York, New York
› Author Affiliations
Further Information

Publication History

08 January 2018

28 January 2018

Publication Date:
28 February 2018 (online)

Abstract

Total knee arthroplasty (TKA) is recognized as one of the most successful surgical procedures performed today. One of the most common and dreaded complications of TKA is postoperative infection. To prevent infections, it is critical to identify patients at high risk through analyzing their risk factors, and help in addressing them prior to surgery. The effort to prevent infection must be carried through every step of the surgical process, from preoperative counseling to intraoperative measures and postoperative protocols. Hair removal, the application of antiseptics, the utilization of antibiotics, barbed sutures, smart dressings, and antibacterial washes are some of the avenues surgeons may explore to help prevent infection.

 
  • References

  • 1 Le DH, Goodman SB, Maloney WJ, Huddleston JI. Current modes of failure in TKA: infection, instability, and stiffness predominate. Clin Orthop Relat Res 2014; 472 (07) 2197-2200
  • 2 Namba RS, Inacio MCS, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Joint Surg Am 2013; 95 (09) 775-782
  • 3 Kalore NV, Gioe TJ, Singh JA. Diagnosis and management of infected total knee arthroplasty. Open Orthop J 2011; 5: 86-91
  • 4 Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008; 23 (07) 984-991
  • 5 Kapadia BH, Banerjee S, Cherian JJ, Bozic KJ, Mont MA. The economic impact of periprosthetic infections after total hip arthroplasty at a specialized tertiary-care center. J Arthroplasty 2016; 31 (07) 1422-1426
  • 6 Daines BK, Dennis DA, Amann S. Infection prevention in total knee arthroplasty. J Am Acad Orthop Surg 2015; 23 (06) 356-364
  • 7 Eka A, Chen AF. Patient-related medical risk factors for periprosthetic joint infection of the hip and knee. Ann Transl Med 2015; 3 (16) 233
  • 8 Sporer SM, Rogers T, Abella L. Methicillin-resistant and methicillin-sensitive Staphylococcus aureus screening and decolonization to reduce surgical site infection in elective total joint arthroplasty. J Arthroplasty 2016; 31 (9, Suppl): 144-147
  • 9 Rao N, Cannella B, Crossett LS, Yates Jr AJ, McGough III R. A preoperative decolonization protocol for staphylococcus aureus prevents orthopaedic infections. Clin Orthop Relat Res 2008; 466 (06) 1343-1348
  • 10 Zywiel MG, Daley JA, Delanois RE, Naziri Q, Johnson AJ, Mont MA. Advance pre-operative chlorhexidine reduces the incidence of surgical site infections in knee arthroplasty. Int Orthop 2011; 35 (07) 1001-1006
  • 11 Hemani ML, Lepor H. Skin preparation for the prevention of surgical site infection: which agent is best?. Rev Urol 2009; 11 (04) 190-195
  • 12 Climo MW, Sepkowitz KA, Zuccotti G. , et al. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med 2009; 37 (06) 1858-1865
  • 13 Johnson AJ, Kapadia BH, Daley JA, Molina CB, Mont MA. Chlorhexidine reduces infections in knee arthroplasty. J Knee Surg 2013; 26 (03) 213-218
  • 14 Brown NM, Cipriano CA, Moric M, Sporer SM, Della Valle CJ. Dilute Betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection. J Arthroplasty 2012; 27 (01) 27-30
  • 15 Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev 2011; (11) CD004122
  • 16 Stonecypher K. Going around in circles: is this the best practice for preparing the skin?. Crit Care Nurs Q 2009; 32 (02) 94-98
  • 17 Darouiche RO, Wall Jr MJ, Itani KM. , et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med 2010; 362 (01) 18-26
  • 18 Meehan J, Jamali AA, Nguyen H. Prophylactic antibiotics in hip and knee arthroplasty. J Bone Joint Surg Am 2009; 91 (10) 2480-2490
  • 19 von Keudell A, Canseco JA, Gomoll AH. Deleterious effects of diluted povidone-iodine on articular cartilage. J Arthroplasty 2013; 28 (06) 918-921
  • 20 Nickinson RSJ, Board TN, Gambhir AK, Porter ML, Kay PR. The microbiology of the infected knee arthroplasty. Int Orthop 2010; 34 (04) 505-510
  • 21 Darouiche RO, Wall Jr MJ, Itani KM. , et al. Chlorhexidine–alcohol versus povidone–iodine for surgical-site antisepsis. N Engl J Med 2010; 362 (01) 18-26
  • 22 Boxma H, Broekhuizen T, Patka P, Oosting H. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the Dutch Trauma Trial. Lancet 1996; 347 (9009): 1133-1137
  • 23 Weinstein MA, McCabe JP, Cammisa Jr FP. Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord 2000; 13 (05) 422-426
  • 24 Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 2006; 66 (08) 1089-1105
  • 25 Bolon MK, Morlote M, Weber SG, Koplan B, Carmeli Y, Wright SB. Glycopeptides are no more effective than beta-lactam agents for prevention of surgical site infection after cardiac surgery: a meta-analysis. Clin Infect Dis 2004; 38 (10) 1357-1363
  • 26 Chambers D, Worthy G, Myers L. , et al. Glycopeptide vs. non-glycopeptide antibiotics for prophylaxis of surgical site infections: a systematic review. Surg Infect (Larchmt) 2010; 11 (05) 455-462
  • 27 AlBuhairan B, Hind D, Hutchinson A. Antibiotic prophylaxis for wound infections in total joint arthroplasty: a systematic review. J Bone Joint Surg Br 2008; 90 (07) 915-919
  • 28 Yamada K, Matsumoto K, Tokimura F, Okazaki H, Tanaka S. Are bone and serum cefazolin concentrations adequate for antimicrobial prophylaxis?. Clin Orthop Relat Res 2011; 469 (12) 3486-3494
  • 29 Lazzarini L, Novelli A, Marzano N. , et al. Regional and systemic prophylaxis with teicoplanin in total knee arthroplasty: a tissue penetration study. J Arthroplasty 2003; 18 (03) 342-346
  • 30 Murphy E, Spencer SJ, Young D, Jones B, Blyth MJG. MRSA colonisation and subsequent risk of infection despite effective eradication in orthopaedic elective surgery. J Bone Joint Surg Br 2011; 93 (04) 548-551
  • 31 Young SW, Zhang M, Freeman JT, Mutu-Grigg J, Pavlou P, Moore GA. The Mark Coventry Award: higher tissue concentrations of vancomycin with low-dose intraosseous regional versus systemic prophylaxis in TKA: a randomized trial. Clin Orthop Relat Res 2014; 472 (01) 57-65
  • 32 Bull AL, Worth LJ, Richards MJ. Impact of vancomycin surgical antibiotic prophylaxis on the development of methicillin-sensitive staphylococcus aureus surgical site infections: report from Australian Surveillance Data (VICNISS). Ann Surg 2012; 256 (06) 1089-1092
  • 33 Bratzler DW, Dellinger EP, Olsen KM. , et al; American Society of Health-System Pharmacists; Infectious Disease Society of America; Surgical Infection Society; Society for Healthcare Epidemiology of America. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm 2013; 70 (03) 195-283
  • 34 Crawford T, Rodvold KA, Solomkin JS. Vancomycin for surgical prophylaxis?. Clin Infect Dis 2012; 54 (10) 1474-1479
  • 35 Tacconelli E, Cataldo MA, Albanese A. , et al. Vancomycin versus cefazolin prophylaxis for cerebrospinal shunt placement in a hospital with a high prevalence of methicillin-resistant Staphylococcus aureus. J Hosp Infect 2008; 69 (04) 337-344
  • 36 Spelman D, Harrington G, Russo P, Wesselingh S. Clinical, microbiological, and economic benefit of a change in antibiotic prophylaxis for cardiac surgery. Infect Control Hosp Epidemiol 2002; 23 (07) 402-404
  • 37 Garey KW, Lai D, Dao-Tran TK, Gentry LO, Hwang LY, Davis BR. Interrupted time series analysis of vancomycin compared to cefuroxime for surgical prophylaxis in patients undergoing cardiac surgery. Antimicrob Agents Chemother 2008; 52 (02) 446-451
  • 38 Berríos-Torres SI, Yi SH, Bratzler DW. , et al. Activity of commonly used antimicrobial prophylaxis regimens against pathogens causing coronary artery bypass graft and arthroplasty surgical site infections in the United States, 2006-2009. Infect Control Hosp Epidemiol 2014; 35 (03) 231-239
  • 39 Miller LG, McKinnell JA, Vollmer ME, Spellberg B. Impact of methicillin-resistant Staphylococcus aureus prevalence among S. aureus isolates on surgical site infection risk after coronary artery bypass surgery. Infect Control Hosp Epidemiol 2011; 32 (04) 342-350
  • 40 Muralidhar B, Anwar SM, Handa AI, Peto TEA, Bowler ICJW. Prevalence of MRSA in emergency and elective patients admitted to a vascular surgical unit: implications for antibiotic prophylaxis. Eur J Vasc Endovasc Surg 2006; 32 (04) 402-407
  • 41 Elliott RA, Weatherly HLA, Hawkins NS. , et al. An economic model for the prevention of MRSA infections after surgery: non-glycopeptide or glycopeptide antibiotic prophylaxis?. Eur J Health Econ 2010; 11 (01) 57-66
  • 42 Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis 2007; 45 (Suppl. 03) S191-S195
  • 43 Deresinski S. Counterpoint: vancomycin and Staphylococcus aureus--an antibiotic enters obsolescence. Clin Infect Dis 2007; 44 (12) 1543-1548
  • 44 Illingworth KD, Mihalko WM, Parvizi J. , et al. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am 2013; 95 (08) e50 . Doi: 10.2106/JBJS.L.00596
  • 45 Chiang HY, Herwaldt LA, Blevins AE, Cho E, Schweizer ML. Effectiveness of local vancomycin powder to decrease surgical site infections: a meta-analysis. Spine J 2014; 14 (03) 397-407
  • 46 Van Hal M, Lee J, Laudermilch D, Nwasike C, Kang J. Vancomycin powder regimen for prevention of surgical site infection in complex spine surgeries. Clin Spine Surg 2017; 30 (08) E1062-E1065
  • 47 Assor M. Noncemented total knee arthroplasty with a local prophylactic anti-infection agent: a prospective series of 135 cases. Can J Surg 2010; 53 (01) 47-50
  • 48 Otte JE, Politi JR, Chambers B, Smith CA. Intrawound vancomycin powder reduces early prosthetic joint infections in revision hip and knee arthroplasty. Surg Technol Int 2017; 30: 284-289
  • 49 Edelstein AI, Weiner JA, Cook RW. , et al. Intra-articular vancomycin powder eliminates methicillin-resistant S. aureus in a rat model of a contaminated intra-articular implant. J Bone Joint Surg Am 2017; 99 (03) 232-238
  • 50 Young SW, Roberts T, Johnson S, Dalton JP, Coleman B, Wiles S. Regional intraosseous administration of prophylactic antibiotics is more effective than systemic administration in a mouse model of TKA. Clin Orthop Relat Res 2015; 473 (11) 3573-3584
  • 51 Evaluating Bactisure Wound Lavage in Orthopedic Wounds. Available at: https://clinicaltrials.gov/ct2/show/results/NCT03192124?term=bactisure&rank=1 . Accessed November 24, 2017
  • 52 Sprowson AP, Jensen CD, Parsons N. , et al. The effect of triclosan coated sutures on rate of surgical site infection after hip and knee replacement: a protocol for a double-blind randomised controlled trial. BMC Musculoskelet Disord 2014; 15 (01) 237
  • 53 Marco F, Vallez R, Gonzalez P, Ortega L, de la Lama J, Lopez-Duran L. Study of the efficacy of coated Vicryl plus antibacterial suture in an animal model of orthopedic surgery. Surg Infect (Larchmt) 2007; 8 (03) 359-365
  • 54 Nett M, Avelar R, Sheehan M, Cushner F. Water-tight knee arthrotomy closure: comparison of a novel single bidirectional barbed self-retaining running suture versus conventional interrupted sutures. J Knee Surg 2011; 24 (01) 55-59
  • 55 Galal I, El-Hindawy K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection. Am J Surg 2011; 202 (02) 133-138
  • 56 Cai J, Karam JA, Parvizi J, Smith EB, Sharkey PF. Aquacel surgical dressing reduces the rate of acute PJI following total joint arthroplasty: a case-control study. J Arthroplasty 2014; 29 (06) 1098-1100
  • 57 Hurlow J. AQUACEL® Ag dressing with Hydrofiber® technology. Adv Wound Care (New Rochelle) 2012; 1 (02) 104-107
  • 58 Saba SC, Tsai R, Glat P. Clinical evaluation comparing the efficacy of Aquacel Ag Hydrofiber dressing versus petrolatum gauze with antibiotic ointment in partial-thickness burns in a pediatric burn center. J Burn Care Res 2009; 30 (03) 380-385
  • 59 Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 2004; 12 (03) 288-294
  • 60 Patel VP, Walsh M, Sehgal B, Preston C, DeWal H, Di Cesare PE. Factors associated with prolonged wound drainage after primary total hip and knee arthroplasty. J Bone Joint Surg Am 2007; 89 (01) 33-38
  • 61 Gomoll AH, Lin A, Harris MB. Incisional vacuum-assisted closure therapy. J Orthop Trauma 2006; 20 (10) 705-709
  • 62 Karlakki S, Brem M, Giannini S, Khanduja V, Stannard J, Martin R. Negative pressure wound therapy for management of the surgical incision in orthopaedic surgery: a review of evidence and mechanisms for an emerging indication. Bone Joint Res 2013; 2 (12) 276-284
  • 63 Cooper HJ, Bas MA. Closed-incision negative-pressure therapy versus antimicrobial dressings after revision hip and knee surgery: a comparative study. J Arthroplasty 2016; 31 (05) 1047-1052