J Knee Surg 2019; 32(02): 146-152
DOI: 10.1055/s-0038-1636912
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Posterior Condyle Offset and Maximum Knee Flexion Following a Cruciate Retaining Total Knee Arthroplasty

Wei Wang
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
2   Department of Orthopaedic Surgery, Second Hospital of Xi'an Jiao Tong University, Xi'an, China
,
Bin Yue
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
3   Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
,
JianHua Wang
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
4   Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
,
Hany Bedair
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
5   Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
Harry Rubash
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
5   Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
Guoan Li
1   Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Harvard Medical School, Newton, Massachusetts
› Author Affiliations
Further Information

Publication History

22 September 2017

28 January 2018

Publication Date:
07 March 2018 (online)

Abstract

Inconsistent data has been reported on the effect of the femoral posterior condyle offset (PCO) on the maximal knee flexion after total knee arthroplasty (TKA). This study investigated the relationship between the postoperative changes of the PCO and the changes of maximal knee flexion after a cruciate retaining (CR) TKA. Nine patients with medial osteoarthritis (OA) in one knee were investigated. Before operation, each index knee was magnetic resonance imaging (MRI) scanned for construction of a three-dimensional (3D) knee model. The patient then performed a maximal weight-bearing (WB) flexion and the index knee flexion was measured using a dual fluoroscopy technique. At an average of 8 months after a CR TKA, all patients performed the same WB knee flexion. The postoperative changes of the PCO, the posterior cruciate ligament (PCL) elongation, and the posterior tibial slope (PTS) were determined. The postoperative changes of maximal knee flexion were determined by comparing with the preoperative maximal flexion angles of the knee. The correlations of the postoperative changes of PCO and PTS with the postoperative changes of the maximal flexion angle and PCL elongation of the knee were analyzed. The preoperative PCO (28.5 ± 4.5 mm) was significantly smaller than the postoperative PCO (31.1 ± 5.1 mm) (p < 0.05). The increasing of PCO after surgery is correlated with the decreasing of maximal knee flexion angle (r = 0.74) and the increasing of PCL elongation (r = 0.64) after the TKA. The PTS was not found to change significantly after the TKA and was not significantly correlated to the maximal knee flexion angle and PCL elongation. The postoperative increases of the PCO were shown to cause overstretching of the PCL and poor flexion angle of the knee after the CR TKA. Restoration of PCO could help optimize the maximal flexion of the knee after the TKA with consideration about PCL tension.

 
  • References

  • 1 Sultan PG, Most E, Schule S, Li G, Rubash HE. Optimizing flexion after total knee arthroplasty: advances in prosthetic design. Clin Orthop Relat Res 2003; (416) 167-173
  • 2 Bauer T, Biau D, Colmar M, Poux X, Hardy P, Lortat-Jacob A. Influence of posterior condylar offset on knee flexion after cruciate-sacrificing mobile-bearing total knee replacement: a prospective analysis of 410 consecutive cases. Knee 2010; 17 (06) 375-380
  • 3 Dennis DA, Komistek RD, Scuderi GR, Zingde S. Factors affecting flexion after total knee arthroplasty. Clin Orthop Relat Res 2007; 464 (464) 53-60
  • 4 Kawamura H, Bourne RB. Factors affecting range of flexion after total knee arthroplasty. J Orthop Sci 2001; 6 (03) 248-252
  • 5 Langlois J, Charles-Nelson A, Katsahian S, Beldame J, Lefebvre B, Bercovy M. Predictors of flexion using the rotating concave-convex total knee arthroplasty: preoperative range of motion is not the only determinant. Knee Surg Sports Traumatol Arthrosc 2015; 23 (06) 1734-1740
  • 6 Ritter MA. High-flexion knee designs: more hype than hope? In the affirmative. J Arthroplasty 2006; 21 (04) (Suppl. 01) 40-41
  • 7 Scuderi GR, Hedden DR, Maltry JA, Traina SM, Sheinkop MB, Hartzband MA. Early clinical results of a high-flexion, posterior-stabilized, mobile-bearing total knee arthroplasty: a US investigational device exemption trial. J Arthroplasty 2012; 27 (03) 421-429
  • 8 Sharma A, Komistek RD, Scuderi GR, Cates Jr HE. High-flexion TKA designs: what are their in vivo contact mechanics?. Clin Orthop Relat Res 2007; 464 (464) 117-126
  • 9 Springorum HR, Maderbacher G, Craiovan B. , et al. No difference between standard and high flexion cruciate retaining total knee arthroplasty: a prospective randomised controlled study. Knee Surg Sports Traumatol Arthrosc 2015; 23 (06) 1591-1597
  • 10 Suggs JF, Kwon YM, Durbhakula SM, Hanson GR, Li G. In vivo flexion and kinematics of the knee after TKA: comparison of a conventional and a high flexion cruciate-retaining TKA design. Knee Surg Sports Traumatol Arthrosc 2009; 17 (02) 150-156
  • 11 Tanavalee A, Ngarmukos S, Tantavisut S, Limtrakul A. High-flexion TKA in patients with a minimum of 120 degrees of pre-operative knee flexion: outcomes at six years of follow-up. Int Orthop 2011; 35 (09) 1321-1326
  • 12 Ueo T, Kihara Y, Ikeda N, Kawai J, Nakamura K, Hirokawa S. Deep flexion-oriented bisurface-type knee joint and its tibial rotation that attributes its high performance of flexion. J Arthroplasty 2011; 26 (03) 476-482
  • 13 Victor J, Ries M, Bellemans J, Robb WM, Van Hellemondt G. High-flexion, motion-guided total knee arthroplasty: who benefits the most?. Orthopedics 2007; 30 (8, Suppl): 77-79
  • 14 Wang Z, Wei M, Zhang Q, Zhang Z, Cui Y. Comparison of high-flexion and conventional implants in total knee arthroplasty: a meta-analysis. Med Sci Monit 2015; 21: 1679-1686
  • 15 Zhang Z, Zhu W, Zhang W. High-flexion posterior-substituting versus cruciate-retaining prosthesis in total knee arthroplasty: functional outcome, range of motion and complication comparison. Arch Orthop Trauma Surg 2015; 135 (01) 119-124
  • 16 Arabori M, Matsui N, Kuroda R. , et al. Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 2008; 13 (01) 46-50
  • 17 Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 2002; 84 (01) 50-53
  • 18 Han C, Li XD, Jiang HQ, Ma JX, Ma XL. The use of gabapentin in the management of postoperative pain after total knee arthroplasty: a PRISMA-compliant meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016; 95 (23) e3883
  • 19 Malviya A, Lingard EA, Weir DJ, Deehan DJ. Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 2009; 17 (05) 491-498
  • 20 Onodera T, Majima T, Nishiike O, Kasahara Y, Takahashi D. Posterior femoral condylar offset after total knee replacement in the risk of knee flexion contracture. J Arthroplasty 2013; 28 (07) 1112-1116
  • 21 Song SJ, Bae DK, Kim KI, Jeong HY. Changes in femoral posterior condylar offset, tibial posterior slope angle, and joint line height after cruciate-retaining total knee arthroplasty. Knee Surg Relat Res 2016; 28 (01) 27-33
  • 22 Wang JT, Zhang Y, Liu Q. , et al. Effect of posterior condylar offset on clinical results after posterior-stabilized total knee arthroplasty. Chin J Traumatol 2015; 18 (05) 259-266
  • 23 Wang W, Tsai TY, Yue B, Kwon YM, Li G. Posterior femoral condylar offsets of a Chinese population. Knee 2014; 21 (02) 553-556
  • 24 Zhang H, Lü L, Zhang Y, Xu Y, Wang W, Wei B. Influence of posterior condylar offset and anteroposterior femorotibial translation on knee flexion after posterior cruciate-sacrificing self alignment bearing total knee arthroplasty [in Chinese]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011; 25 (01) 42-46
  • 25 Johal P, Hassaballa MA, Eldridge JD, Porteous AJ. The posterior condylar offset ratio. Knee 2012; 19 (06) 843-845
  • 26 Massin P, Gournay A. Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 2006; 21 (06) 889-896
  • 27 Hanratty BM, Thompson NW, Wilson RK, Beverland DE. The influence of posterior condylar offset on knee flexion after total knee replacement using a cruciate-sacrificing mobile-bearing implant. J Bone Joint Surg Br 2007; 89 (07) 915-918
  • 28 Ishii Y, Noguchi H, Takeda M, Sato J, Toyabe S. Posterior condylar offset does not correlate with knee flexion after TKA. Clin Orthop Relat Res 2013; 471 (09) 2995-3001
  • 29 Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 2005; 87 (07) 1470-1475
  • 30 Dimitriou D, Tsai TY, Park KK. , et al. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: in-vivo surgical transepicondylar axis and geometric center axis analyses. J Biomech 2016; 49 (09) 1891-1898
  • 31 Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G. Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 2011; 29 (01) 40-46
  • 32 Yue B, Varadarajan KM, Rubash HE, Li G. In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int Orthop 2012; 36 (07) 1387-1392
  • 33 Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G. Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 2006; 24 (05) 974-981
  • 34 Li G, Wuerz TH, DeFrate LE. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng 2004; 126 (02) 314-318
  • 35 DeFrate LE, Gill TJ, Li G. In vivo function of the posterior cruciate ligament during weight-bearing knee flexion. Am J Sports Med 2004; 32 (08) 1923-1928
  • 36 Park KK, Hosseini A, Tsai TY, Kwon YM, Li G. Elongation of the collateral ligaments after cruciate retaining total knee arthroplasty and the maximum flexion of the knee. J Biomech 2015; 48 (03) 418-424
  • 37 Chambers AW, Wood AR, Kosmopoulos V, Sanchez HB, Wagner RA. Effect of posterior tibial slope on flexion and anterior-posterior tibial translation in posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 2016; 31 (01) 103-106
  • 38 Shi X, Shen B, Kang P, Yang J, Zhou Z, Pei F. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2013; 21 (12) 2696-2703
  • 39 Kim KH, Bin SI, Kim JM. The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg Relat Res 2012; 24 (03) 158-163
  • 40 Han H, Oh S, Chang CB, Kang SB. Changes in femoral posterior condylar offset and knee flexion after PCL-substituting total knee arthroplasty: comparison of anterior and posterior referencing systems. Knee Surg Sports Traumatol Arthrosc 2016; 24 (08) 2483-2488