Semin Musculoskelet Radiol 2018; 22(02): 245-260
DOI: 10.1055/s-0038-1639471
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cartilage Imaging: Techniques and Developments

Edwin H.G. Oei
1   Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Marius C. Wick
2   Department of Diagnostic Radiology, Institute for Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Anja Müller-Lutz
3   Division of Radiology, Department of Diagnostic and Interventional, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
,
Christoph Schleich
3   Division of Radiology, Department of Diagnostic and Interventional, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
,
Falk R. Miese
3   Division of Radiology, Department of Diagnostic and Interventional, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
19 April 2018 (online)

Abstract

Cartilage degeneration is one of the most common chronic age-related joint disorders leading to pain and reduced joint motion. The increasing prevalence of osteoarthritis requires accurate cartilage imaging, both clinically and in research. Detailed cartilage imaging is also necessary for traumatic cartilage lesions and for pre- and postoperative assessment of cartilage repair procedures. Although still widely used, conventional radiography bears significant limitations because it assesses cartilage indirectly by joint space width. Magnetic resonance imaging (MRI) enables direct visualization of cartilage damage along with other concomitantly affected joint tissues. Several semiquantitative grading systems and volumetric analysis methods exist to assess cartilage damage and cartilage repair on MRI. Quantification of hyaline and fibrocartilage biochemical composition is possible with novel MRI methods such as T2- and T1ρ-mapping, delayed gadolinium-enhanced MRI of cartilage, glycosaminoglycan chemical exchange saturation transfer, and sodium imaging, along with quantitative computed tomography arthrography. These techniques provide promising quantitative imaging biomarkers that can detect early cartilage changes before morphological alterations occur.

 
  • References

  • 1 Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 2014; 10 (07) 437-441
  • 2 Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1987; 30 (08) 914-918
  • 3 Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology 2011; 260 (02) 332-354
  • 4 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16 (04) 494-502
  • 5 Wick MC, Klauser AS. Radiological differential diagnosis of rheumatoid arthritis [in German]. Radiologe 2012; 52 (02) 116-123
  • 6 Landsmeer MLA, Runhaar J, van der Plas P. , et al. Reducing progression of knee OA features assessed by MRI in overweight and obese women: secondary outcomes of a preventive RCT. Osteoarthritis Cartilage 2016; 24 (06) 982-990
  • 7 Matzat SJ, van Tiel J, Gold GE, Oei EHG. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 2013; 3 (03) 162-174
  • 8 Maroudas A, Bayliss MT, Venn MF. Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 1980; 39 (05) 514-523
  • 9 Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 1977; 36 (02) 121-129
  • 10 Lequesne MG, Laredo JD. The faux profil (oblique view) of the hip in the standing position. Contribution to the evaluation of osteoarthritis of the adult hip. Ann Rheum Dis 1998; 57 (11) 676-681
  • 11 Bruyere O, Genant H, Kothari M. , et al. Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartilage 2007; 15 (01) 98-103
  • 12 Raynauld JP, Martel-Pelletier J, Berthiaume M-J. , et al. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 2004; 50 (02) 476-487
  • 13 Altman R, Brandt K, Hochberg M. , et al. Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. Osteoarthritis Cartilage 1996; 4 (04) 217-243
  • 14 Schiphof D, Boers M, Bierma-Zeinstra SMA. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 2008; 67 (07) 1034-1036
  • 15 Felson DT, Gale DR, Elon Gale M. , et al. Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford) 2005; 44 (01) 100-104
  • 16 Spector TD, Harris PA, Hart DJ. , et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 1996; 39 (06) 988-995
  • 17 Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage 2005; 13 (03) 198-205
  • 18 Barr C, Bauer JS, Malfair D. , et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 2007; 17 (06) 1518-1528
  • 19 Trattnig S, Mamisch TC, Pinker K. , et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 2008; 18 (06) 1251-1259
  • 20 Li CQ, Chen W, Rosenberg JK. , et al. Optimizing isotropic three-dimensional fast spin-echo methods for imaging the knee. J Magn Reson Imaging 2014; 39 (06) 1417-1425
  • 21 Notohamiprodjo M, Kuschel B, Horng A. , et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012; 47 (04) 231-239
  • 22 Welsch GH, Mamisch TC, Weber M, Horger W, Bohndorf K, Trattnig S. High-resolution morphological and biochemical imaging of articular cartilage of the ankle joint at 3.0 T using a new dedicated phased array coil: in vivo reproducibility study. Skeletal Radiol 2008; 37 (06) 519-526
  • 23 Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT. Chondromalacia patellae: assessment with MR imaging. Radiology 1987; 164 (03) 763-766
  • 24 Peterfy CG, Guermazi A, Zaim S. , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 25 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67 (02) 206-211
  • 26 Kornaat PR, Ceulemans RYT, Kroon HM. , et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34 (02) 95-102
  • 27 Hunter DJ, Guermazi A, Lo GH. , et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (08) 990-1002
  • 28 Marlovits S, Striessnig G, Resinger CT. , et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 29 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 30 Eckstein F, Gavazzeni A, Sittek H. , et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 1996; 36 (02) 256-265
  • 31 Pilch L, Stewart C, Gordon D. , et al. Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction. J Rheumatol 1994; 21 (12) 2307-2321
  • 32 Graichen H, von Eisenhart-Rothe R, Vogl T, Englmeier K-H, Eckstein F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum 2004; 50 (03) 811-816
  • 33 Kalke RJ, Di Primio GA, Schweitzer ME. MR and CT arthrography of the knee. Semin Musculoskelet Radiol 2012; 16 (01) 57-68
  • 34 Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging 2017; 45 (04) 949-965
  • 35 Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res 2017; 35 (03) 412-423
  • 36 Kolf A-K, Hesper T, Schleich C. , et al. T2* mapping of ovine intervertebral discs: normative data for cervical and lumbar spine. J Orthop Res 2016; 34 (04) 717-724
  • 37 Oei EHG, van Tiel J, Robinson WH, Gold GE. Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res (Hoboken) 2014; 66 (08) 1129-1141
  • 38 Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001; 177 (03) 665-669
  • 39 Siriwanarangsun P, Statum S, Biswas R, Bae WC, Chung CB. Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant Imaging Med Surg 2016; 6 (06) 731-743
  • 40 Bae WC, Dwek JR, Znamirowski R. , et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 2010; 254 (03) 837-845
  • 41 Bittersohl B, Kircher J, Miese FR. , et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage—a histologically controlled study. J Shoulder Elbow Surg 2015; 24 (10) 1644-1652
  • 42 Carballido-Gamio J, Blumenkrantz G, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med 2010; 63 (02) 465-472
  • 43 Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267 (02) 503-513
  • 44 Ellermann J, Ziegler C, Nissi MJ. , et al. Acetabular cartilage assessment in patients with femoroacetabular impingement by using T2* mapping with arthroscopic verification. Radiology 2014; 271 (02) 512-523
  • 45 Lazovic-Stojkovic J, Mosher TJ, Smith HE, Yang QX, Dardzinski BJ, Smith MB. Interphalangeal joint cartilage: high-spatial-resolution in vivo MR T2 mapping--a feasibility study. Radiology 2004; 233 (01) 292-296
  • 46 Verschueren J, Meuffels DE, Bron EE. , et al. Possibility of quantitative T2-mapping MRI of cartilage near metal in high tibial osteotomy: a human cadaver study. J Orthop Res Available at: onlinelibrary.wiley.com/doi/10.1002/jor.23729/abstract
  • 47 Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage 2010; 18 (03) 358-364
  • 48 Zhang Y, Hu J, Duan C, Hu P, Lu H, Peng X. Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1ρ mapping. PLoS One 2017; 12 (06) e0178406
  • 49 Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996; 36 (05) 665-673
  • 50 Sigurdsson U, Siversson C, Lammentausta E, Svensson J, Tiderius C-J, Dahlberg LE. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord 2014; 15: 226
  • 51 Watanabe A, Wada Y, Obata T. , et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 2006; 239 (01) 201-208
  • 52 Buchbender C, Scherer A, Kröpil P. , et al. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, ΔR1 and value of pre-contrast imaging. Skeletal Radiol 2012; 41 (06) 685-692
  • 53 Trattnig S, Marlovits S, Gebetsroither S. , et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 2007; 26 (04) 974-982
  • 54 Zilkens C, Miese F, Kim Y-J. , et al. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage. J Magn Reson Imaging 2014; 39 (01) 94-102
  • 55 Boesen M, Jensen KE, Qvistgaard E. , et al. Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection. Acta Radiol 2006; 47 (04) 391-396
  • 56 Forghani R. Adverse effects of gadolinium-based contrast agents: changes in practice patterns. Top Magn Reson Imaging 2016; 25 (04) 163-169
  • 57 Zilkens C, Miese F, Kim YJ. , et al. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3T: a prospective controlled study. Eur J Radiol 2012; 81 (11) 3420-3425
  • 58 Kang Y, Choi JY, Yoo HJ, Hong SH, Kang HS. Delayed gadolinium-enhanced MR imaging of cartilage: a comparative analysis of different gadolinium-based contrast agents in an ex vivo porcine model. Radiology 2017; 282 (03) 734-742
  • 59 Li W, Scheidegger R, Wu Y. , et al. Delayed contrast-enhanced MRI of cartilage: comparison of nonionic and ionic contrast agents. Magn Reson Med 2010; 64 (05) 1267-1273
  • 60 Freedman JD, Lusic H, Wiewiorski M, Farley M, Snyder BD, Grinstaff MW. A cationic gadolinium contrast agent for magnetic resonance imaging of cartilage. Chem Commun (Camb) 2015; 51 (56) 11166-11169
  • 61 Gray ML, Burstein D, Kim YJ, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res 2008; 26 (03) 281-291
  • 62 Zilkens C, Miese F, Herten M. , et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol 2013; 82 (02) e81-e86
  • 63 van Tiel J, Kotek G, Reijman M. , et al. Is T1ρ mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 2016; 279 (02) 523-531
  • 64 van Tiel J, Bron EE, Tiderius CJ. , et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol 2013; 23 (02) 496-504
  • 65 Tiderius C, Hori M, Williams A. , et al. dGEMRIC as a function of BMI. Osteoarthritis Cartilage 2006; 14 (11) 1091-1097
  • 66 Crema MD, Hunter DJ, Burstein D. , et al. Delayed gadolinium-enhanced magnetic resonance imaging of medial tibiofemoral cartilage and its relationship with meniscal pathology: a longitudinal study using 3.0T magnetic resonance imaging. Arthritis Rheumatol 2014; 66 (06) 1517-1524
  • 67 Bron EE, van Tiel J, Smit H. , et al. Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol 2013; 23 (01) 246-252
  • 68 Verschueren J, van Tiel J, Reijman M. , et al. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?. Osteoarthritis Cartilage 2017; 25 (09) 1484-1487
  • 69 Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim Y-J. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am 2006; 88 (07) 1540-1548
  • 70 Schmaranzer F, Haefeli PC, Hanke MS. , et al. How Does the dGEMRIC index change after surgical treatment for FAI? A prospective controlled study: preliminary results. Clin Orthop Relat Res 2017; 475 (04) 1080-1099
  • 71 Miese F, Buchbender C, Scherer A. , et al. Molecular imaging of cartilage damage of finger joints in early rheumatoid arthritis with delayed gadolinium-enhanced magnetic resonance imaging. Arthritis Rheum 2012; 64 (02) 394-399
  • 72 Schleich C, Müller-Lutz A, Sewerin P. , et al. Intra-individual assessment of inflammatory severity and cartilage composition of finger joints in rheumatoid arthritis. Skeletal Radiol 2015; 44 (04) 513-518
  • 73 van Tiel J, Kotek G, Reijman M. , et al. Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC. Eur Radiol 2014; 24 (09) 2261-2270
  • 74 Bostelmann R, Bostelmann T, Nasaca A, Steiger HJ, Zaucke F, Schleich C. Biochemical validity of imaging techniques (X-ray, MRI, and dGEMRIC) in degenerative disc disease of the human cervical spine-an in vivo study. Spine J 2017; 17 (02) 196-202
  • 75 Koy T, Zange J, Rittweger J. , et al. Assessment of lumbar intervertebral disc glycosaminoglycan content by gadolinium-enhanced MRI before and after 21-days of head-down-tilt bedrest. PLoS One 2014; 9 (11) e112104
  • 76 Ciavarro C, Caiani EG, Brayda-Bruno M. , et al. Mid-term evaluation of the effects of dynamic neutralization system on lumbar intervertebral discs using quantitative molecular MR imaging. J Magn Reson Imaging 2012; 35 (05) 1145-1151
  • 77 Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 2003; 49 (03) 488-492
  • 78 Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 2003; 85-A (10) 1987-1992
  • 79 Owman H, Ericsson YB, Englund M. , et al. Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthritis Cartilage 2014; 22 (10) 1537-1541
  • 80 Williams A, Shetty SK, Burstein D, Day CS, McKenzie C. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study. Osteoarthritis Cartilage 2008; 16 (04) 530-532
  • 81 Owman H, Tiderius CJ, Ericsson YB, Dahlberg LE. Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Osteoarthritis Cartilage 2014; 22 (07) 928-932
  • 82 Kurkijärvi JE, Mattila L, Ojala RO. , et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage 2007; 15 (04) 372-378
  • 83 Pinker K, Szomolanyi P, Welsch GC. , et al. Longitudinal evaluation of cartilage composition of matrix-associated autologous chondrocyte transplants with 3-T delayed gadolinium-enhanced MRI of cartilage. AJR Am J Roentgenol 2008; 191 (05) 1391-1396
  • 84 Akella SV, Regatte RR, Gougoutas AJ. , et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med 2001; 46 (03) 419-423
  • 85 Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 1997; 38 (06) 863-867
  • 86 Stahl R, Luke A, Li X. , et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol 2009; 19 (01) 132-143
  • 87 Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage 2009; 17 (01) 12-18
  • 88 Subburaj K, Valentinitsch A, Dillon AB. , et al. Regional variations in MR relaxation of hip joint cartilage in subjects with and without femoroacetabular impingement. Magn Reson Imaging 2013; 31 (07) 1129-1136
  • 89 Samaan MA, Zhang AL, Gallo MC. , et al. Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement. J Magn Reson Imaging 2016; 44 (06) 1539-1545
  • 90 Anwander H, Melkus G, Rakhra KS, Beaulé PE. T1ρ MRI detects cartilage damage in asymptomatic individuals with a cam deformity. J Orthop Res 2016; 34 (06) 1004-1009
  • 91 Zaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol 2013; 58 (22) R221-R269
  • 92 Müller-Lutz A, Schleich C, Pentang G. , et al. Age-dependency of glycosaminoglycan content in lumbar discs: a 3T gagCEST study. J Magn Reson Imaging 2015; 42 (06) 1517-1523
  • 93 Wei W, Lambach B, Jia G, Kaeding C, Flanigan D, Knopp MV. A phase I clinical trial of the knee to assess the correlation of gagCEST MRI, delayed gadolinium-enhanced MRI of cartilage and T2 mapping. Eur J Radiol 2017; 90: 220-224
  • 94 Kogan F, Hargreaves BA, Gold GE. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med 2017; 77 (03) 1134-1141
  • 95 Juras V, Winhofer Y, Szomolanyi P. , et al. Multiparametric MR imaging depicts glycosaminoglycan change in the Achilles tendon during ciprofloxacin administration in healthy men: initial observation. Radiology 2015; 275 (03) 763-771
  • 96 Singh A, Haris M, Cai K. , et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (02) 588-594
  • 97 Wei W, Jia G, Flanigan D, Zhou J, Knopp MV. Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: accuracy of B0 field inhomogeneity corrections with gradient echo method. Magn Reson Imaging 2014; 32 (01) 41-47
  • 98 Müller-Lutz A, Schleich C, Schmitt B. , et al. Improvement of gagCEST imaging in the human lumbar intervertebral disc by motion correction. Skeletal Radiol 2015; 44 (04) 505-511
  • 99 Lee JS, Parasoglou P, Xia D, Jerschow A, Regatte RR. Uniform magnetization transfer in chemical exchange saturation transfer magnetic resonance imaging. Sci Rep 2013; 3: 1707
  • 100 Müller-Lutz A, Schleich C, Schmitt B. , et al. Gender, BMI and T2 dependencies of glycosaminoglycan chemical exchange saturation transfer in intervertebral discs. Magn Reson Imaging 2016; 34 (03) 271-275
  • 101 Schmitt B, Zbýn S, Stelzeneder D. , et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 2011; 260 (01) 257-264
  • 102 Rehnitz C, Kupfer J, Streich NA. , et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthritis Cartilage 2014; 22 (10) 1732-1742
  • 103 Schreiner MM, Zbýň Š, Schmitt B. , et al. Reproducibility and regional variations of an improved gagCEST protocol for the in vivo evaluation of knee cartilage at 7 T. MAGMA 2016; 29 (03) 513-521
  • 104 Koller U, Apprich S, Schmitt B, Windhager R, Trattnig S. Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. Int Orthop 2017; 41 (05) 969-974
  • 105 Schleich C, Müller-Lutz A, Eichner M. , et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers. Spine 2016; 41 (02) 146-152
  • 106 Schleich C, Müller-Lutz A, Blum K. , et al. Facet tropism and facet joint orientation: risk factors for the development of early biochemical alterations of lumbar intervertebral discs. Osteoarthritis Cartilage 2016; 24 (10) 1761-1768
  • 107 Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 2013; 38 (03) 511-529
  • 108 Madelin G, Jerschow A, Regatte RR. Sodium relaxation times in the knee joint in vivo at 7T. NMR Biomed 2012; 25 (04) 530-537
  • 109 Madelin G, Babb JS, Xia D, Chang G, Jerschow A, Regatte RR. Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (03) 841-849
  • 110 Wheaton AJ, Borthakur A, Shapiro EM. , et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 2004; 231 (03) 900-905
  • 111 Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res 1992; 10 (01) 1-13
  • 112 Zbýň Š, Mlynárik V, Juras V, Szomolanyi P, Trattnig S. Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed 2016; 29 (02) 206-215
  • 113 Siebelt M, Waarsing JH, Kops N. , et al. Quantifying osteoarthritic cartilage changes accurately using in vivo microCT arthrography in three etiologically distinct rat models. J Orthop Res 2011; 29 (11) 1788-1794
  • 114 Siebelt M, van Tiel J, Waarsing JH. , et al. Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthritis Cartilage 2011; 19 (10) 1183-1189
  • 115 Hirvasniemi J, Kulmala KAM, Lammentausta E. , et al. In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage. Osteoarthritis Cartilage 2013; 21 (03) 434-442
  • 116 Myller KAH, Turunen MJ, Honkanen JTJ. , et al. In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone. Ann Biomed Eng 2017; 45 (03) 811-818
  • 117 van Tiel J, Siebelt M, Waarsing JH. , et al. CT arthrography of the human knee to measure cartilage quality with low radiation dose. Osteoarthritis Cartilage 2012; 20 (07) 678-685
  • 118 van Tiel J, Siebelt M, Reijman M. , et al. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthritis Cartilage 2016; 24 (06) 1012-1020
  • 119 Aula AS, Jurvelin JS, Töyräs J. Simultaneous computed tomography of articular cartilage and subchondral bone. Osteoarthritis Cartilage 2009; 17 (12) 1583-1588
  • 120 Sudoł-Szopińska I, Schueller-Weidekamm C, Plagou A, Teh J. Ultrasound in arthritis. Radiol Clin North Am 2017; 55 (05) 985-996
  • 121 Schueller-Weidekamm C, Schueller G, Aringer M, Weber M, Kainberger F. Impact of sonography in gouty arthritis: comparison with conventional radiography, clinical examination, and laboratory findings. Eur J Radiol 2007; 62 (03) 437-443
  • 122 Iagnocco A, Filippucci E, Perella C. , et al. Clinical and ultrasonographic monitoring of response to adalimumab treatment in rheumatoid arthritis. J Rheumatol 2008; 35 (01) 35-40