Thromb Haemost 1969; 22(03): 431-449
DOI: 10.1055/s-0038-1651427
Originalarbeiten - Original Articles - Travaux Originaux
Schattauer GmbH

Thrombosthenin - Electron Microscopical Studies on Its Localization in Human Blood Platelets and Some Properties of Its Subunits[*]

M Bettex-Galland
1   Theodor Kocher Institute and Anatomical Institute of the University Berne, Switzerland
,
E. F Lüscher
1   Theodor Kocher Institute and Anatomical Institute of the University Berne, Switzerland
,
E. R Weibel
1   Theodor Kocher Institute and Anatomical Institute of the University Berne, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2018 (online)

Summary

1. Thrombosthenin A, the actin-like component of the contractile protein of blood platelets, was prepared in its monomeric or globular form and compared by gel electrophoresis with actin from rabbit striated muscle. Both proteins migrate at the same speed.

The ultrastructure of the fibrillar form of thrombosthenin A was studied by negative contrast technique in the electron microscope. The pictures reveal a helicoidal, double-stranded, beaded structure similar to the fibrillar form of muscle actin. From measurements of periodicity it was concluded that the protein unit must have a diameter of approximately 35 Å.

2. The structure of thrombosthenin in its superprecipitated form, also on negative contrast pictures, shows the presence of the fibrillar form of thrombosthenin A and of large, spindle-like aggregates of thrombosthenin M.

3. Thrombosthenin in the precipitated and superprecipitated form was fixed and examined on ultra-thin sections. The precipitate is built up of fine, evenly distributed strands due mainly to the presence of the fibrillar form of thrombosthenin A; the super-precipitate shows an obvious contraction of the protein material made up of thin filaments of thrombosthenin A and spindle-like, well contrasted large needles of thrombosthenin M.

4. Glycerol-extracted normal, human platelets were exposed to conditions favoring precipitation and superprecipitation of thrombosthenin : it was possible to localize the contractile material in the platelet cytoplasm on the basis of its characteristic structure in the contracted state.

5. Normal platelets were fixed and examined by means of electron microscopy: the complex structure of the marginal region is described and possible relationships between its structure and the contractile protein are discussed.

* The results reported, here were presented at the “Colloque Franco-Suisse de Microscopie Electronique”, held in Lausanne, 1969, Mai 19th–21st (15).


 
  • References

  • 1 Bârány M, Bârány K, Guba F. Preparation of actin without extraction of myosin. Nature (Lond.) 179: 818 1957;
  • 2 Behnke O. Further studies on microtubules. A marginal bundle in human and rat thrombocytes. J. Ultrastruct. Res. 13: 469 1965;
  • 3 Behnke O. Morphological changes in the hyalomere of rat blood platelets in experimental venous thrombi. Scand. J. Haemat. 3: 136 1966;
  • 4 Behnke O. Electron microscopic observations on the membrane systems of the rat blood platelets. Anat. Ree. 158/2: 121 1967;
  • 5 Behnke O. Nonspecific deposition of lead in experiments on fine structural localization of enzymatic activity of rat blood platelets. J. Histochem. Cytochem. 14: 432 1967;
  • 6 Behnke O. Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J. Cell Biol. 34: 697 1967;
  • 7 Behnke O. Some possible practical implications of the lability of blood platelet microtubules. Vox Sang. 13: 502 1967;
  • 8 Behnke O, Zelander T. Substructure in negatively stained microtubules of mammalian blood platelets. Exp. Cell Res. 43: 236 1966;
  • 9 Behnke O, Zelander T. Filamentous substructures of microtubules of the marginal bundle of mammalian blood platelets. J. Ultrastructure Res. 19: 147 1967;
  • 10 Bessis M, Breton-Gorius J. Les microtubules et les fibrilles dans les plaquettes étalées. Nouv. Rev. franc. Hémat. 5: 657 1965;
  • 11 Bettex-Galland M, Lüscher E. F. Extraction of an actomyosin-like protein from human thrombocytes. Nature (Lond.) 184: 276 1959;
  • 12 Bettex-Galland M, Lüscher E. F. Studies on the metabolism of human blood platelets in relation to clot retraction. Thrombos. Diathes. haemorrh. (Stuttg.) 4: 178 1960;
  • 13 Bettex-Galland M, Lüscher E. F. Thrombosthenin – a contractile protein from thrombocytes. Its extraction from human blood platelets and some of its properties. Biochim. biophys. Acta (Amst.) 10: 536 1961;
  • 14 Bettex-Galland M, Lüscher E. F. Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins. Advanc. Protein Chem. 20: 1 1965;
  • 15 Bettex-Galland M, Lüscher E. F, Weibel E. R. Structure et localisation de la thrombosthé-nine, protéine contractile plaquettaire. J. de Microscopie 8/4: 35a 1969;
  • 16 Bettex-Galland M, Portzehl H, Lüscher E. F. Dissociation of thrombosthenin into Wo components comparable with actin and myosin. Nature (Lond.) 193: 777 1962;
  • 17 Bettex-Galland M, Portzehl H, Lüscher E. F. Dissoziation des Thrombosthenins in seine zwei Komponenten. Untersuchung ihrer Adenosintriphosphatase-Aktivität. Helv. chim. Acta 46: 1595 1963;
  • 18 Booyse F. M, Rafelson Jr. M. E. Hypothesis : Studies on human platelets III : A contractile protein model for platelet aggregation. Blood 33: 100 1969;
  • 19 Carsten M. E, Mommaerts W. F. H. M. A study of actin by means of starch gel electrophoresis. Biochemistry 2: 28 1963;
  • 20 Chambers D. A, Salzman E. W, Neri L. L. Characterization of “Ecto-ATPase” of human blood platelets. Arch. Biochem. 119: 173 1967;
  • 21 Coidter H. D. Rapid and improved methods for embedding biological tissues in Epon 812 and Araldite 502. J. Ultrastruct. Res. 20: 346 1967;
  • 22 Davis B. J. Disc electrophoresis-III. Method and application to human serum proteins. In: Gel Electrophoresis. Ann. N. Y. Acad. Sci. 121: 404 1964;
  • 23 Farquhar M. G, Palade G. E. Cell junctions in amphibian skin. J. Cell Biol. 26: 263 1965;
  • 24 Fleischer S, Fleischer B, Stoeckenius W. Fine structure of lipid-depleted mitochondria. J. Cell Biol. 32: 193 1967;
  • 25 Fukami A, Adachi K. A new method of preparation of a self-perforated micro plastic grid and its application (I). J. Electron Microscopy 14/2: 112 1965;
  • 26 Hanson J, Lowy J. The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol. 6: 46 1963;
  • 27 Haydon G. B, Taylor D. A. Microtubules in hamster platelets. J. Cell Biol. 26: 673 1965;
  • 28 Huxley H. E, Hanson J. Quantitative studies on the structure of cross-striated myofibrils. I. Investigation by interference microscopy. Biochim. biophys. Acta (Amst.) 23: 229 1957;
  • 29 Huxley H. E, Hanson J. The molecular basis of contraction in cross-striated muscles. In: The structure and function of muscle. Bourne G. H. (Editor). Acad. Press.; Vol. I. 183 1960
  • 30 Kelly R. E, Rice R. V. Localization of myosin filaments in smooth muscle. J. Cell Biol. 37/1: 105 1968;
  • 31 Luft J. H. Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9: 409 1961;
  • 32 Lüscher E. F. Platelet organelles: Report of Subcommittee on Current Concepts of Haemo-stasis and Thrombosis. Suppl. Thrombos. Diathes. haemorrh. (Stuttg.). (In press.)
  • 33 Lüscher E. F, Bettex-Galland M. Properties and functional significance of the contractile protein of the blood platelets. In: Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes. Deutsch E, Gerlach E, Moser K. (Ed.) 247. Georg Thieme; Stuttgart: 1968
  • 34 Molenaar L. J, Schotanus B. An improved method for making carbon films for electron microscopy. Science and Industry 9: 24 1962;
  • 35 Nachman R. L, Marcus A. J, Safier L. B. Platelet thrombosthenin: Subcellular localization and function. J. clin. Invest. 46: 1380 1967;
  • 36 Nonomura Y. Myofilaments in smooth muscle of guinea pig’s Taenia coli. J. Cell Biol. 39: 741 1968;
  • 37 Pinset-Härström I. Etude de l’influence du milieu sur la formation de filaments multimolé-culaires caractéristiques à partir d’actomyosine solubilisée en présence d’ATP. J. Ultrastruct. Res. 25: 173 1968;
  • 38 Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208 1963;
  • 39 Sabatini D. D, Benseh K. G, Barrnett R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17: 19 1963;
  • 40 Salzman E. W, Chambers D. A, Neri L. L. Possible mechanism of aggregation of blood platelets by adenosine diphosphate. Nature (Lond.) 210: 167 1966;
  • 41 Sandborn E. P, Le Buis J. J, Bois P. Cytoplasmic microtubules in blood platelets. Blood 27: 24: 1 1966;
  • 42 Seifter S, Gallop P. M. The structure proteins. In: The Proteins. Neurath H. (Ed.) Vol.4 153. Academic Press; New York, London: 1966
  • 43 Silver M. D. Microtubules in the cytoplasma of mammalian platelets. Nature (Lond.) 209: 1048 1966;
  • 44 Silver M. D, McKinstry J. E. Morphology of microtubules in rabbit platelets. Z. Zellforsch. 81: 18 1967;
  • 45 Sixma J. J, Molenaar I. Microtubules and microfibrils in human platelets. Thrombos. Diathes. haemorrh. (Stuttg.) 16: 153 1966;
  • 46 Szent-Györgyi A. Chemistry of muscular contraction. Academic Press Inc.; N. Y.: 1951
  • 47 White J. G. New developments in platelet ultrastructural research. Blood 30: 539 1967;
  • 48 White J. G. Effects of ethylenediamine tetracetic acid (EDTA) on platelet structure. Scand. J. Haemat. 5: 241 1968;
  • 49 White J. G. The substructure of human platelet microtubules. Blood 32: 638 1968;
  • 50 White J. G, Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 30: 625 1967;
  • 51 Zucker-Franklin D. Microfibrils of blood platelets: Their relationship to microtubules and the contractile protein. J. clin. Invest. 48: 165 1969;
  • 52 Zucker-Franklin D, Nachman R. L, Marcus A. J. Ultrastructure of thrombosthenin, the contractile protein of human blood platelets. Science 157: 945 1967;