Thromb Haemost 2018; 118(08): 1370-1381
DOI: 10.1055/s-0038-1661351
Coagulation and Fibrinolysis
Georg Thieme Verlag KG Stuttgart · New York

Searching for a Cell-Based Therapeutic Tool for Haemophilia A within the Embryonic/Foetal Liver and the Aorta-Gonads-Mesonephros Region

Luis J. Serrano*
1   Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
2   Department of Physiology, School of Biology, Complutense University of Madrid, Madrid, Spain
,
Ana Cañete*
3   Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, Seville, Spain
4   Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
,
Tamara Garcia-Leal
3   Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, Seville, Spain
,
Laura Tomás-Gallardo
3   Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, Seville, Spain
,
Ana I. Flores
1   Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
2   Department of Physiology, School of Biology, Complutense University of Madrid, Madrid, Spain
,
Paz de la Torre
1   Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
,
Antonio Liras**
1   Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
2   Department of Physiology, School of Biology, Complutense University of Madrid, Madrid, Spain
,
María José Sánchez**
3   Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, Seville, Spain
› Author Affiliations
Funding This work was supported by the Spanish Ministry of Science and Technology Grant BFU2010–15801; Junta de Andalucia Research Funding Program PAI-BIO-295 and the Andalusian Association of Haemophilia ASANHEMO FV2016–20.
Further Information

Publication History

19 October 2017

07 May 2018

Publication Date:
10 July 2018 (online)

Abstract

The development of new strategies based on cell therapy approaches to correct haemophilia A (HA) requires further insights into new cell populations capable of producing coagulation factor VIII (FVIII) and presenting stable engraftment potential. The major producers of FVIII in the adult are liver sinusoidal endothelial cells (LSECs) and in a lesser degree bone marrow-derived cells, both of which have been shown to ameliorate the bleeding phenotype in adult HA mice after transplantation. We have previously shown that cells from the foetal liver (FL) and the aorta-gonads-mesonephros (AGM) haematopoietic locations possess higher LSEC engraftment potential in newborn mice compared with adult-derived LSECs, constituting likely therapeutic targets for the treatment of HA in neonates. However, less is known about the production of FVIII in embryonic locations. Quantitative polymerase chain reaction and Western blot analysis were performed to assess the relative level of FVIII production in different embryonic tissues and at various developmental stages, identifying the FL and AGM region from day 12 (E12) as prominent sources of FVIII. Furthermore, FL-derived VE-cad+CD45-Lyve1+/− endothelial/endothelial progenitor cells, presenting vascular engraftment potential, produced high levels of F8 ribonucleic acid compared with CD45+ blood progenitors or Dlk1+ hepatoblasts. In addition, we show that the E11 AGM explant cultures expanded cells with LSEC repopulation activity, instrumental to further understand signals for in vitro generation of LSECs. Taking into account the capacity for FVIII expression, culture expansion and newborn engraftment potential, these results support the use of cells with foetal characteristics for correction of FVIII deficiency in young individuals.

Authors' Contributions

Luis J. Serrano Ramos: collection and/or assembly of data, data analysis and interpretation. Ana Cañete: collection and/or assembly of data, data analysis and interpretation. Tamara Garcia-Leal: collection and/or assembly of data. Laura Tomas-Gallardo: collection and/or assembly of data. Ana I. Flores: revised critically the manuscript for important intellectual content. Paz de la Torre: revised critically the manuscript for important intellectual content. Antonio Liras: conception and design, financial support, revised critically the manuscript. Maria José Sanchez: conception and design, data analysis and interpretation, collection and assembly of data, financial support, manuscript writing. The final manuscript was read and approved by all authors.


* These authors have contributed equally as first authors.


** These authors have contributed equally as principal researchers to this work.


Supplementary Material

 
  • References

  • 1 Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014; 12 (12) 1954-1965
  • 2 Stonebraker JS, Brooker M, Amand RE, Farrugia A, Srivastava A. A study of reported factor VIII use around the world. Haemophilia 2010; 16 (01) 33-46
  • 3 Witmer C, Young G. Factor VIII inhibitors in hemophilia A: rationale and latest evidence. Ther Adv Hematol 2013; 4 (01) 59-72
  • 4 Hay CR, Palmer B, Chalmers E. , et al; United Kingdom Haemophilia Centre Doctors' Organisation (UKHCDO). Incidence of factor VIII inhibitors throughout life in severe hemophilia A in the United Kingdom. Blood 2011; 117 (23) 6367-6370
  • 5 Follenzi A, Benten D, Novikoff P, Faulkner L, Raut S, Gupta S. Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice. J Clin Invest 2008; 118 (03) 935-945
  • 6 Fahs SA, Hille MT, Shi Q, Weiler H, Montgomery RR. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123 (24) 3706-3713
  • 7 Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D. Murine coagulation factor VIII is synthesized in endothelial cells. Blood 2014; 123 (24) 3697-3705
  • 8 Mouta Carreira C, Nasser SM, di Tomaso E. , et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001; 61 (22) 8079-8084
  • 9 Pan J, Dinh TT, Rajaraman A. , et al. Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood 2016; 128 (01) 104-109
  • 10 Zanolini D, Merlin S, Feola M. , et al. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica 2015; 100 (07) 881-892
  • 11 Sánchez MJ, Holmes A, Miles C, Dzierzak E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 1996; 5 (06) 513-525
  • 12 Garcia-Ortega AM, Cañete A, Quinter C. , et al. Enhanced hematovascular contribution of SCL 3′ enhancer expressing fetal liver cells uncovers their potential to integrate in extramedullary adult niches. Stem Cells 2010; 28 (01) 100-112
  • 13 Cañete A, Comaills V, Prados I. , et al. Characterization of a fetal liver cell population endowed with long-term multiorgan endothelial reconstitution potential. Stem Cells 2017; 35 (02) 507-521
  • 14 Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 2017; 49: 19-24
  • 15 Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86 (06) 897-906
  • 16 Taoudi S, Morrison AM, Inoue H, Gribi R, Ure J, Medvinsky A. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development 2005; 132 (18) 4179-4191
  • 17 Silberstein L, Sánchez MJ, Socolovsky M. , et al. Transgenic analysis of the stem cell leukemia +19 stem cell enhancer in adult and embryonic hematopoietic and endothelial cells. Stem Cells 2005; 23 (09) 1378-1388
  • 18 Filali EE, Hiralall JK, van Veen HA, Stolz DB, Seppen J. Human liver endothelial cells, but not macrovascular or microvascular endothelial cells, engraft in the mouse liver. Cell Transplant 2013; 22 (10) 1801-1811
  • 19 Szilvassy SJ, Meyerrose TE, Ragland PL, Grimes B. Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood 2001; 98 (07) 2108-2115
  • 20 Bowie MB, Kent DG, Dykstra B. , et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A 2007; 104 (14) 5878-5882
  • 21 Dabeva MD, Petkov PM, Sandhu J. , et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol 2000; 156 (06) 2017-2031
  • 22 Benten D, Follenzi A, Bhargava KK, Kumaran V, Palestro CJ, Gupta S. Hepatic targeting of transplanted liver sinusoidal endothelial cells in intact mice. Hepatology 2005; 42 (01) 140-148
  • 23 Krause P, Rave-Fränk M, Wolff HA, Becker H, Christiansen H, Koenig S. Liver sinusoidal endothelial and biliary cell repopulation following irradiation and partial hepatectomy. World J Gastroenterol 2010; 16 (31) 3928-3935
  • 24 Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8 (10) e77255
  • 25 Zeng L, Jia L, Xu S, Yan Z, Ding S, Xu K. Vascular endothelium changes after conditioning in hematopoietic stem cell transplantation: role of cyclophosphamide and busulfan. Transplant Proc 2010; 42 (07) 2720-2724
  • 26 Sánchez M, Göttgens B, Sinclair AM. , et al. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 1999; 126 (17) 3891-3904
  • 27 Crisan M, Kartalaei PS, Vink CS. , et al. BMP signalling differentially regulates distinct haematopoietic stem cell types. Nat Commun 2015; 6: 8040
  • 28 Yoder MC, Hiatt K. Engraftment of embryonic hematopoietic cells in conditioned newborn recipients. Blood 1997; 89 (06) 2176-2183
  • 29 Walls JR, Coultas L, Rossant J, Henkelman RM. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 2008; 3 (08) e2853
  • 30 Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 2007; 100 (02) 174-190
  • 31 Fay PJ, Smudzin TM, Walker FJ. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem 1991; 266 (30) 20139-20145
  • 32 Rosenberg JB, Foster PA, Kaufman RJ. , et al. Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J Clin Invest 1998; 101 (03) 613-624
  • 33 Liu L, Mah C, Fletcher BS. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted sleeping beauty transposon. Mol Ther 2006; 13 (05) 1006-1015
  • 34 Pittman DD, Millenson M, Marquette K, Bauer K, Kaufman RJ. A2 domain of human recombinant-derived factor VIII is required for procoagulant activity but not for thrombin cleavage. Blood 1992; 79 (02) 389-397
  • 35 Roth SD, Schüttrumpf J, Milanov P. , et al. Chemical chaperones improve protein secretion and rescue mutant factor VIII in mice with hemophilia A. PLoS One 2012; 7 (09) e44505
  • 36 Brown HC, Wright JF, Zhou S. , et al. Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery. Mol Ther Methods Clin Dev 2014; 1: 14036
  • 37 Wei W, Zheng C, Zhu M. , et al. Missense mutations near the N-glycosylation site of the A2 domain lead to various intracellular trafficking defects in coagulation factor VIII. Sci Rep 2017; 7: 45033
  • 38 Orlova NA, Kovnir SV, Vorobiev II, Gabibov AG, Vorobiev AI. Blood clotting factor VIII: from evolution to therapy. Acta Naturae 2013; 5 (02) 19-39
  • 39 Storb R, Kolb HJ, Graham TC, Kane PJ, Thomas ED. The effect of prior blood transfusions on hemopoietic grafts from histoincompatible canine littermates. Transplantation 1972; 14 (02) 248-252
  • 40 Bontempo FA, Lewis JH, Gorenc TJ. , et al. Liver transplantation in hemophilia A. Blood 1987; 69 (06) 1721-1724
  • 41 Nierhoff D, Ogawa A, Oertel M, Chen YQ, Shafritz DA. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology 2005; 42 (01) 130-139
  • 42 Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 2005; 132 (05) 1127-1136
  • 43 Ito K, Yanagida A, Okada K, Yamazaki Y, Nakauchi H, Kamiya A. Mesenchymal progenitor cells in mouse foetal liver regulate differentiation and proliferation of hepatoblasts. Liver Int 2014; 34 (09) 1378-1390
  • 44 Do H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem 1999; 274 (28) 19587-19592
  • 45 Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 2011; 117 (19) 5264-5272
  • 46 Kim H, Cho HJ, Kim SW. , et al. CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 2010; 107 (05) 602-614
  • 47 Minasi MG, Riminucci M, De Angelis L. , et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129 (11) 2773-2783
  • 48 de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 2002; 16 (05) 673-683
  • 49 Nishikawa M, Tahara T, Hinohara A, Miyajima A, Nakahata T, Shimosaka A. Role of the microenvironment of the embryonic aorta-gonad-mesonephros region in hematopoiesis. Ann N Y Acad Sci 2001; 938: 109-116
  • 50 Johnson LA, Prevo R, Clasper S, Jackson DG. Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 2007; 282 (46) 33671-33680
  • 51 Follenzi A, Raut S, Merlin S, Sarkar R, Gupta S. Role of bone marrow transplantation for correcting hemophilia A in mice. Blood 2012; 119 (23) 5532-5542
  • 52 Arora N, Wenzel PL, McKinney-Freeman SL. , et al. Effect of developmental stage of HSC and recipient on transplant outcomes. Dev Cell 2014; 29 (05) 621-628
  • 53 Harb R, Xie G, Lutzko C. , et al. Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology 2009; 137 (02) 704-712
  • 54 Fantin A, Vieira JM, Gestri G. , et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 2010; 116 (05) 829-840
  • 55 DeFalco T, Bhattacharya I, Williams AV, Sams DM, Capel B. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 2014; 111 (23) E2384-E2393
  • 56 Ong K, Horsfall W, Conway EM, Schuh AC. Early embryonic expression of murine coagulation system components. Thromb Haemost 2000; 84 (06) 1023-1030
  • 57 Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010; 18 (02) 175-189
  • 58 Nonaka H, Tanaka M, Suzuki K, Miyajima A. Development of murine hepatic sinusoidal endothelial cells characterized by the expression of hyaluronan receptors. Dev Dyn 2007; 236 (08) 2258-2267
  • 59 Bautch VL, Caron KM. Blood and lymphatic vessel formation. Cold Spring Harb Perspect Biol 2015; 7 (03) a008268
  • 60 Gordon EJ, Gale NW, Harvey NL. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn 2008; 237 (07) 1901-1909
  • 61 Orelio C, Dzierzak E. Identification of 2 novel genes developmentally regulated in the mouse aorta-gonad-mesonephros region. Blood 2003; 101 (06) 2246-2249
  • 62 Mascarenhas MI, Parker A, Dzierzak E, Ottersbach K. Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood 2009; 114 (21) 4645-4653
  • 63 Bale SS, Geerts S, Jindal R, Yarmush ML. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 2016; 6: 25329
  • 64 Yao H, Liu B, Wang X. , et al. Identification of high proliferative potential precursors with hemangioblastic activity in the mouse aorta-gonad- mesonephros region. Stem Cells 2007; 25 (06) 1423-1430
  • 65 Wu Y, Hu Z, Li Z. , et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci Rep 2016; 6: 18865