Semin Liver Dis 2018; 38(03): 230-241
DOI: 10.1055/s-0038-1661372
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Renal Function in Cirrhosis: A Critical Review of Available Tools

Salvatore Piano
1   Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine – DIMED, University of Padova, Italy
,
Alessandra Brocca
1   Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine – DIMED, University of Padova, Italy
,
Paolo Angeli
1   Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine – DIMED, University of Padova, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2018 (online)

Abstract

Patients with cirrhosis have a high prevalence of renal dysfunction. The susceptibility to renal dysfunction is due to both the severe splanchnic arterial vasodilation and the systemic inflammation observed in these patients. An accurate assessment of renal function is recommended in all patients with cirrhosis. Indeed, the renal function assessment guides the management of patients, helps to refine prognosis and to define transplant strategies. Despite its limitations, serum creatinine is still the most used biomarker for the estimation of glomerular filtration rate (GFR) and the assessment of acute kidney injury (AKI) in patients with cirrhosis. New biomarkers of GFR such as cystatin C may improve the assessment of GFR and the prognostic stratification in these patients. AKI is a life-threatening complication and needs a timely management. The differential diagnosis between hepatorenal syndrome (HRS) and acute tubular necrosis (ATN) is tricky in clinical practice. New biomarkers of kidney injury, such as neutrophil gelatinase-associated lipocalin and interleukin-18, represent useful tools in refining the discrimination between HRS and ATN. Patients with HRS need a prompt treatment with vasoconstrictors and albumin and a rapid evaluation for liver transplant eligibility. In this article, the authors reviewed the available tools in the diagnosis and management of renal dysfunction in cirrhosis.

Financial Support

None.


 
  • References

  • 1 Piano S, Romano A, Di Pascoli M, Angeli P. Why and how to measure renal function in patients with liver disease. Liver Int 2017; 37 (Suppl. 01) 116-122
  • 2 Fagundes C, Barreto R, Guevara M. , et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol 2013; 59 (03) 474-481
  • 3 Piano S, Rosi S, Maresio G. , et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. J Hepatol 2013; 59 (03) 482-489
  • 4 Belcher JM, Garcia-Tsao G, Sanyal AJ. , et al; TRIBE-AKI Consortium. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 2013; 57 (02) 753-762
  • 5 Huelin P, Piano S, Solà E. , et al. Validation of a staging system for acute kidney injury in patients with cirrhosis and association with acute-on-chronic liver failure. Clin Gastroenterol Hepatol 2017; 15 (03) 438-445.e5
  • 6 Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut 2013; 62 (01) 131-137
  • 7 Fede G, D'Amico G, Arvaniti V. , et al. Renal failure and cirrhosis: a systematic review of mortality and prognosis. J Hepatol 2012; 56 (04) 810-818
  • 8 Moreau R, Jalan R, Gines P. , et al; CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013; 144 (07) 1426-1437 , 1437.e1–1437.e9
  • 9 Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8 (05) 1151-1157
  • 10 Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol 2015; 63 (05) 1272-1284
  • 11 Ruiz-del-Arbol L, Urman J, Fernández J. , et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 2003; 38 (05) 1210-1218
  • 12 Ruiz-del-Arbol L, Monescillo A, Arocena C. , et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 2005; 42 (02) 439-447
  • 13 Krag A, Bendtsen F, Henriksen JH, Møller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 2010; 59 (01) 105-110
  • 14 Wiese S, Hove JD, Bendtsen F, Møller S. Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 2014; 11 (03) 177-186
  • 15 Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014; 60 (01) 197-209
  • 16 Bajaj JS, Heuman DM, Hylemon PB. , et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (05) 940-947
  • 17 Tazi KA, Moreau R, Hervé P. , et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology 2005; 129 (01) 303-314
  • 18 Yang Y-Y, Liu H, Nam SW, Kunos G, Lee SS. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids. J Hepatol 2010; 53 (02) 298-306
  • 19 Shah N, Dhar D, El Zahraa Mohammed F. , et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol 2012; 56 (05) 1047-1053
  • 20 Shah N, Mohamed FE, Jover-Cobos M. , et al. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int 2013; 33 (03) 398-409
  • 21 Clària J, Stauber RE, Coenraad MJ. , et al; CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 2016; 64 (04) 1249-1264
  • 22 Fasolato S, Angeli P, Dallagnese L. , et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology 2007; 45 (01) 223-229
  • 23 Angeli P, Tonon M, Pilutti C, Morando F, Piano S. Sepsis-induced acute kidney injury in patients with cirrhosis. Hepatol Int 2016; 10 (01) 115-123
  • 24 Ackerman Z, Cominelli F, Reynolds TB. Effect of misoprostol on ibuprofen-induced renal dysfunction in patients with decompensated cirrhosis: results of a double-blind placebo-controlled parallel group study. Am J Gastroenterol 2002; 97 (08) 2033-2039
  • 25 Elia C, Graupera I, Barreto R. , et al. Severe acute kidney injury associated with non-steroidal anti-inflammatory drugs in cirrhosis: a case-control study. J Hepatol 2015; 63 (03) 593-600
  • 26 Piano S, Tonon M, Vettore E. , et al. Incidence, predictors and outcomes of acute-on-chronic liver failure in outpatients with cirrhosis. J Hepatol 2017; 67 (06) 1177-1184
  • 27 Kamath PS, Wiesner RH, Malinchoc M. , et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001; 33 (02) 464-470
  • 28 Jalan R, Pavesi M, Saliba F. , et al; CANONIC Study Investigators; EASL-CLIF Consortium. The CLIF Consortium Acute Decompensation score (CLIF-C ADs) for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure. J Hepatol 2015; 62 (04) 831-840
  • 29 Jalan R, Saliba F, Pavesi M. , et al; CANONIC study investigators of the EASL-CLIF Consortium. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol 2014; 61 (05) 1038-1047
  • 30 Piano S, Bartoletti M, Tonon M. , et al. Assessment of Sepsis-3 criteria and quick SOFA in patients with cirrhosis and bacterial infections. Gut 2017; pii: gutjnl-2017-314324
  • 31 KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2012; 2 (Suppl. 01) 1-138
  • 32 Francoz C, Prié D, Abdelrazek W. , et al. Inaccuracies of creatinine and creatinine-based equations in candidates for liver transplantation with low creatinine: impact on the model for end-stage liver disease score. Liver Transpl 2010; 16 (10) 1169-1177
  • 33 Rosi S, Piano S, Frigo AC. , et al. New ICA criteria for the diagnosis of acute kidney injury in cirrhotic patients: can we use an imputed value of serum creatinine?. Liver Int 2015; 35 (09) 2108-2114
  • 34 Francoz C, Nadim MK, Baron A. , et al. Glomerular filtration rate equations for liver-kidney transplantation in patients with cirrhosis: validation of current recommendations. Hepatology 2014; 59 (04) 1514-1521
  • 35 Kalafateli M, Wickham F, Burniston M. , et al. Development and validation of a mathematical equation to estimate glomerular filtration rate in cirrhosis: the royal free hospital cirrhosis glomerular filtration rate. Hepatology 2017; 65 (02) 582-591
  • 36 Angeli P, Ginès P, Wong F. , et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62 (04) 968-974
  • 37 Francoz C, Nadim MK, Durand F. Kidney biomarkers in cirrhosis. J Hepatol 2016; 65 (04) 809-824
  • 38 Woitas RP, Stoffel-Wagner B, Flommersfeld S. , et al. Correlation of serum concentrations of cystatin C and creatinine to inulin clearance in liver cirrhosis. Clin Chem 2000; 46 (05) 712-715
  • 39 Gerbes AL, Gülberg V, Bilzer M, Vogeser M. Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. Gut 2002; 50 (01) 106-110
  • 40 Inker LA, Schmid CH, Tighiouart H. , et al; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367 (01) 20-29
  • 41 De Souza V, Hadj-Aissa A, Dolomanova O. , et al. Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology 2014; 59 (04) 1522-1531
  • 42 Mindikoglu AL, Dowling TC, Weir MR, Seliger SL, Christenson RH, Magder LS. Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology 2014; 59 (04) 1532-1542
  • 43 Markwardt D, Holdt L, Steib C. , et al. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. Hepatology 2017; 66 (04) 1232-1241
  • 44 Maiwall R, Kumar A, Bhardwaj A, Kumar G, Bhadoria AS, Sarin SK. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study. Liver Int 2018; 38 (04) 654-664
  • 45 KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013; 3: 1-150
  • 46 Arroyo V, Ginès P, Gerbes AL. , et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 1996; 23 (01) 164-176
  • 47 Wong F, Nadim MK, Kellum JA. , et al. Working party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut 2011; 60 (05) 702-709
  • 48 Rodriguez E, Henrique Pereira G, Solà E. , et al. Treatment of type 2 hepatorenal syndrome in patients awaiting transplantation: effects on kidney function and transplantation outcomes. Liver Transpl 2015; 21 (11) 1347-1354
  • 49 Amathieu R, Al-Khafaji A, Sileanu FE. , et al. Significance of oliguria in critically ill patients with chronic liver disease. Hepatology 2017; 66 (05) 1592-1600
  • 50 Nadim MK, Durand F, Kellum JA. , et al. Management of the critically ill patient with cirrhosis: a multidisciplinary perspective. J Hepatol 2016; 64 (03) 717-735
  • 51 Angeli P, Rodríguez E, Piano S. , et al; CANONIC Study Investigators of EASL-CLIF Consortium. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut 2015; 64 (10) 1616-1622
  • 52 Martín-Llahí M, Guevara M, Torre A. , et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology 2011; 140 (02) 488-496.e4
  • 53 Trawalé J-M, Paradis V, Rautou P-E. , et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int 2010; 30 (05) 725-732
  • 54 Fagundes C, Pépin MN, Guevara M. , et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J Hepatol 2012; 57 (02) 267-273
  • 55 Koppel MH, Coburn JW, Mims MM, Goldstein H, Boyle JD, Rubini ME. Transplantation of cadaveric kidneys from patients with hepatorenal syndrome: evidence for the functional nature of renal failure in advanced liver disease. N Engl J Med 1969; 280 (25) 1367-1371
  • 56 Nadim MK, Genyk YS, Tokin C. , et al. Impact of the etiology of acute kidney injury on outcomes following liver transplantation: acute tubular necrosis versus hepatorenal syndrome. Liver Transpl 2012; 18 (05) 539-548
  • 57 Belcher JM, Sanyal AJ, Peixoto AJ. , et al; TRIBE-AKI Consortium. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 2014; 60 (02) 622-632
  • 58 Ariza X, Solà E, Elia C. , et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One 2015; 10 (06) e0128145
  • 59 Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2015; 10 (01) 147-155
  • 60 Singer E, Elger A, Elitok S. , et al. Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes. Kidney Int 2011; 80 (04) 405-414
  • 61 Puthumana J, Ariza X, Belcher JM, Graupera I, Ginès P, Parikh CR. Urine interleukin 18 and lipocalin 2 are biomarkers of acute tubular necrosis in patients with cirrhosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2017; 15 (07) 1003-1013.e3
  • 62 Belcher JM, Garcia-Tsao G, Sanyal AJ. , et al; TRIBE-AKI Consortium. Urinary biomarkers and progression of AKI in patients with cirrhosis. Clin J Am Soc Nephrol 2014; 9 (11) 1857-1867
  • 63 Ariza X, Graupera I, Coll M. , et al; CANONIC Investigators, EASL CLIF Consortium. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol 2016; 65 (01) 57-65
  • 64 Wu H, Craft ML, Wang P. , et al. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 2008; 19 (12) 2331-2341
  • 65 Yamamoto T, Noiri E, Ono Y. , et al. Renal L-type fatty acid–binding protein in acute ischemic injury. J Am Soc Nephrol 2007; 18 (11) 2894-2902
  • 66 Kashani K, Al-Khafaji A, Ardiles T. , et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 2013; 17 (01) R25
  • 67 Marx D, Metzger J, Pejchinovski M. , et al. Proteomics and metabolomics for AKI diagnosis. Semin Nephrol 2018; 38 (01) 63-87
  • 68 Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 2015; 11 (01) 23-33
  • 69 Amrouche L, Desbuissons G, Rabant M. , et al. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol 2017; 28 (02) 479-493
  • 70 Reiberger T, Mandorfer M. Beta adrenergic blockade and decompensated cirrhosis. J Hepatol 2017; 66 (04) 849-859
  • 71 Piano S, Brocca A, Mareso S, Angeli P. Infections complicating cirrhosis. Liver Int 2018; 38 (Suppl. 01) 126-133
  • 72 Sort P, Navasa M, Arroyo V. , et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999; 341 (06) 403-409
  • 73 Martín-Llahí M, Pépin MN, Guevara M. , et al; TAHRS Investigators. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology 2008; 134 (05) 1352-1359
  • 74 Sanyal AJ, Boyer T, Garcia-Tsao G. , et al; Terlipressin Study Group. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 2008; 134 (05) 1360-1368
  • 75 Boyer TD, Sanyal AJ, Wong F. , et al; REVERSE Study Investigators. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology 2016; 150 (07) 1579-1589.e2
  • 76 Cavallin M, Piano S, Romano A. , et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: A randomized controlled study. Hepatology 2016; 63 (03) 983-992
  • 77 Angeli P, Volpin R, Gerunda G. , et al. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology 1999; 29 (06) 1690-1697
  • 78 Cavallin M, Kamath PS, Merli M. , et al; Italian Association for the Study of the Liver Study Group on Hepatorenal Syndrome. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology 2015; 62 (02) 567-574
  • 79 Singh V, Ghosh S, Singh B. , et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol 2012; 56 (06) 1293-1298
  • 80 Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol 2008; 103 (07) 1689-1697
  • 81 Cavallin M, Fasolato S, Marenco S, Piano S, Tonon M, Angeli P. The treatment of hepatorenal syndrome. Dig Dis 2015; 33 (04) 548-554
  • 82 Piano S, Schmidt HH, Ariza X. , et al; EASL CLIF Consortium, European Foundation for the Study of Chronic Liver Failure (EF Clif). Association between grade of acute-on-chronic liver failure and response to terlipressin and albumin in patients with hepatorenal syndrome. Clin Gastroenterol Hepatol 2018; pii: >S1542-3565(18)30105-8
  • 83 Boyer TD, Sanyal AJ, Garcia-Tsao G. , et al; Terlipressin Study Group. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J Hepatol 2011; 55 (02) 315-321
  • 84 Nazar A, Pereira GH, Guevara M. , et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 2010; 51 (01) 219-226
  • 85 Sanyal AJ, Boyer TD, Frederick RT. , et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment Pharmacol Ther 2017; 45 (11) 1390-1402
  • 86 Wong F, Pappas SC, Boyer TD. , et al; REVERSE Investigators. Terlipressin improves renal function and reverses hepatorenal syndrome in patients with systemic inflammatory response syndrome. Clin Gastroenterol Hepatol 2017; 15 (02) 266-272.e1
  • 87 Salerno F, Gerbes A, Ginès P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56 (09) 1310-1318
  • 88 Piano S, Morando F, Fasolato S. , et al. Continuous recurrence of type 1 hepatorenal syndrome and long-term treatment with terlipressin and albumin: a new exception to MELD score in the allocation system to liver transplantation?. J Hepatol 2011; 55 (02) 491-496
  • 89 Allegretti AS, Parada XV, Eneanya ND. , et al. Prognosis of patients with cirrhosis and AKI who initiate RRT. Clin J Am Soc Nephrol 2018; 13 (01) 16-25
  • 90 Bañares R, Nevens F, Larsen FS. , et al; RELIEF study group. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 2013; 57 (03) 1153-1162
  • 91 Kribben A, Gerken G, Haag S. , et al; HELIOS Study Group. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology 2012; 142 (04) 782-789.e3
  • 92 Boyer TD, Sanyal AJ, Garcia-Tsao G. , et al; Terlipressin Study Group. Impact of liver transplantation on the survival of patients treated for hepatorenal syndrome type 1. Liver Transpl 2011; 17 (11) 1328-1332
  • 93 Restuccia T, Ortega R, Guevara M. , et al. Effects of treatment of hepatorenal syndrome before transplantation on posttransplantation outcome: a case-control study. J Hepatol 2004; 40 (01) 140-146
  • 94 Alessandria C, Ozdogan O, Guevara M. , et al. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology 2005; 41 (06) 1282-1289
  • 95 Angeli P, Gines P. Hepatorenal syndrome, MELD score and liver transplantation: an evolving issue with relevant implications for clinical practice. J Hepatol 2012; 57 (05) 1135-1140
  • 96 Sharma P, Goodrich NP, Zhang M, Guidinger MK, Schaubel DE, Merion RM. Short-term pretransplant renal replacement therapy and renal nonrecovery after liver transplantation alone. Clin J Am Soc Nephrol 2013; 8 (07) 1135-1142
  • 97 Northup PG, Argo CK, Bakhru MR, Schmitt TM, Berg CL, Rosner MH. Pretransplant predictors of recovery of renal function after liver transplantation. Liver Transpl 2010; 16 (04) 440-446
  • 98 Formica RN, Aeder M, Boyle G. , et al. Simultaneous liver-kidney allocation policy: a proposal to optimize appropriate utilization of scarce resources. Am J Transplant 2016; 16 (03) 758-766