J Knee Surg 2020; 33(05): 459-465
DOI: 10.1055/s-0039-1678537
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Midflexion Instability in Primary Total Knee Arthroplasty

1   Department of Trauma and Orthopedic Surgery, Our Lady's Hospital, Navan, Co. Meath, Republic of Ireland
,
Aaron Glynn
2   Department of Orthopedics, Our Lady's Hospital, Navan, Co. Meath, Republic of Ireland
› Author Affiliations
Further Information

Publication History

15 December 2017

27 December 2018

Publication Date:
27 February 2019 (online)

Abstract

Instability is one of the most common causes of failure in total knee arthroplasty. Traditionally, it has been classified into three types: extension instability, flexion instability, and hyperextension instability. More recently, a fourth type of instability has been proposed, namely “midflexion instability” (MFI). Whether MFI is distinct from the aforementioned types of instability is contentious, and at present, the condition is yet to be clearly defined. This article reviews the current literature and identifies the best available evidence relevant to the concept of MFI. Our aim is to present an overview of the proposed causes and mechanisms for MFI. By doing so, we also aim to provide a focus on how MFI presents, whether it is indeed a discrete form of instability, and if it influences clinical results.

 
  • References

  • 1 Callaghan JJ, O'rourke MR, Saleh KJ. Why knees fail: lessons learned. J Arthroplasty 2004; 19 (04) (Suppl. 01) 31-34
  • 2 Fehring TK, Valadie AL. Knee instability after total knee arthroplasty. Clin Orthop Relat Res 1994; (299) 157-162
  • 3 Le DH, Goodman SB, Maloney WJ, Huddleston JI. Current modes of failure in TKA: infection, instability, and stiffness predominate. Clin Orthop Relat Res 2014; 472 (07) 2197-2200
  • 4 Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today?. Clin Orthop Relat Res 2002; (404) 7-13
  • 5 Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee arthroplasties failing today--has anything changed after 10 years?. J Arthroplasty 2014; 29 (09) 1774-1778
  • 6 Vince KG. Why knees fail. J Arthroplasty 2003; 18 (03) (Suppl. 01) 39-44
  • 7 Schroer WC, Berend KR, Lombardi AV. , et al. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty 2013; 28 (8, Suppl): 116-119
  • 8 Abdel MP, Haas SB. The unstable knee: wobble and buckle. Bone Joint J 2014; 96-B (11, Supple A): 112-114
  • 9 Browne JA, Parratte S, Pagnano MW. Instability in total knee arthroplasty. In: Scott WN. , ed. Insall & Scott Surgery of the Knee. 6th ed. Philadelphia, PA: Elsevier/Churchill Livingstone; 2017: 1927-1935.e1921
  • 10 Del Gaizo DJ, Della Valle CJ. Instability in primary total knee arthroplasty. Orthopedics 2011; 34 (09) e519-e521
  • 11 Parratte S, Pagnano MW. Instability after total knee arthroplasty. J Bone Joint Surg Am 2008; 90 (01) 184-194
  • 12 Vince KG, Abdeen A, Sugimori T. The unstable total knee arthroplasty: causes and cures. J Arthroplasty 2006; 21 (04) (Suppl. 01) 44-49
  • 13 Yercan HS, Ait Si Selmi T, Sugun TS, Neyret P. Tibiofemoral instability in primary total knee replacement: a review, Part 1: basic principles and classification. Knee 2005; 12 (04) 257-266
  • 14 Yercan HS, Ait Si Selmi T, Sugun TS, Neyret P. Tibiofemoral instability in primary total knee replacement: a review. Part 2: diagnosis, patient evaluation, and treatment. Knee 2005; 12 (05) 336-340
  • 15 Martin JW, Whiteside LA. The influence of joint line position on knee stability after condylar knee arthroplasty. Clin Orthop Relat Res 1990; (259) 146-156
  • 16 Matsumoto K, Ogawa H, Yoshioka H, Akiyama H. Postoperative anteroposterior laxity influences subjective outcome after total knee arthroplasty. J Arthroplasty 2017; 32 (06) 1845-1849
  • 17 Mochizuki T, Tanifuji O, Sato T. , et al. Association between anteroposterior laxity in mid-range flexion and subjective feeling of instability after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017; 25 (11) 3543-3548
  • 18 Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM. A biomechanical comparison between the single-axis and multi-axis total knee arthroplasty systems for the stand-to-sit movement. Clin Biomech (Bristol, Avon) 2005; 20 (04) 428-433
  • 19 Wang H, Simpson KJ, Ferrara MS, Chamnongkich S, Kinsey T, Mahoney OM. Biomechanical differences exhibited during sit-to-stand between total knee arthroplasty designs of varying radii. J Arthroplasty 2006; 21 (08) 1193-1199
  • 20 Zhang LQ, Wang G. Dynamic and static control of the human knee joint in abduction-adduction. J Biomech 2001; 34 (09) 1107-1115
  • 21 Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM. Biomechanical influence of TKA designs with varying radii on bilateral TKA patients during sit-to-stand. Dyn Med 2008; 7: 12
  • 22 Kessler O, Dürselen L, Banks S, Mannel H, Marin F. Sagittal curvature of total knee replacements predicts in vivo kinematics. Clin Biomech (Bristol, Avon) 2007; 22 (01) 52-58
  • 23 Clary CW, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J Biomech 2013; 46 (07) 1351-1357
  • 24 Ezechieli M, Dietzek J, Becher C. , et al. The influence of a single-radius-design on the knee stability. Technol Health Care 2012; 20 (06) 527-534
  • 25 Stoddard JE, Deehan DJ, Bull AM, McCaskie AW, Amis AA. The kinematics and stability of single-radius versus multi-radius femoral components related to mid-range instability after TKA. J Orthop Res 2013; 31 (01) 53-58
  • 26 Jo AR, Song EK, Lee KB, Seo HY, Kim SK, Seon JK. A comparison of stability and clinical outcomes in single-radius versus multi-radius femoral design for total knee arthroplasty. J Arthroplasty 2014; 29 (12) 2402-2406
  • 27 Collados-Maestre I, Lizaur-Utrilla A, Gonzalez-Navarro B. , et al. Better functional outcome after single-radius TKA compared with multi-radius TKA. Knee Surg Sports Traumatol Arthrosc 2017; 25 (11) 3508-3514
  • 28 Hall J, Copp SN, Adelson WS, D'Lima DD, Colwell Jr CW. Extensor mechanism function in single-radius vs multiradius femoral components for total knee arthroplasty. J Arthroplasty 2008; 23 (02) 216-219
  • 29 Hamilton DF, Burnett R, Patton JT. , et al. Implant design influences patient outcome after total knee arthroplasty: a prospective double-blind randomised controlled trial. Bone Joint J 2015; 97-B (01) 64-70
  • 30 Larsen B, Jacofsky MC, Jacofsky DJ. Quantitative, comparative assessment of gait between single-radius and multi-radius total knee arthroplasty designs. J Arthroplasty 2015; 30 (06) 1062-1067
  • 31 Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y. Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty 2015; 30 (05) 864-869
  • 32 Minoda Y, Ikebuchi M, Mizokawa S, Ohta Y, Nakamura H. Mobile-bearing TKA improved the anteroposterior joint stability in mid-flexion range comparing to fixed-bearing TKA. Arch Orthop Trauma Surg 2016; 136 (11) 1601-1606
  • 33 Hino K, Ishimaru M, Iseki Y, Watanabe S, Onishi Y, Miura H. Mid-flexion laxity is greater after posterior-stabilised total knee replacement than with cruciate-retaining procedures: a computer navigation study. Bone Joint J 2013; 95-B (04) 493-497
  • 34 Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am 1981; 63 (08) 1257-1269
  • 35 Amis AA, Bull AM, Gupte CM, Hijazi I, Race A, Robinson JR. Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2003; 11 (05) 271-281
  • 36 Li N, Tan Y, Deng Y, Chen L. Posterior cruciate-retaining versus posterior stabilized total knee arthroplasty: a meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 2014; 22 (03) 556-564
  • 37 Verra WC, Boom LG, Jacobs WC, Schoones JW, Wymenga AB, Nelissen RG. Similar outcome after retention or sacrifice of the posterior cruciate ligament in total knee arthroplasty. Acta Orthop 2015; 86 (02) 195-201
  • 38 Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG. Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev 2013; (10) CD004803
  • 39 Kaneko T, Kono N, Mochizuki Y, Hada M, Toyoda S, Musha Y. Bi-cruciate substituting total knee arthroplasty improved medio-lateral instability in mid-flexion range. J Orthop 2017; 14 (01) 201-206
  • 40 Christen B, Neukamp M, Aghayev E. Consecutive series of 226 journey bicruciate substituting total knee replacements: early complication and revision rates. BMC Musculoskelet Disord 2014; 15: 395
  • 41 Halewood C, Risebury M, Thomas NP, Amis AA. Kinematic behaviour and soft tissue management in guided motion total knee replacement. Knee Surg Sports Traumatol Arthrosc 2014; 22 (12) 3074-3082
  • 42 Luyckx L, Luyckx T, Bellemans J, Victor J. Iliotibial band traction syndrome in guided motion TKA. A new clinical entity after TKA. Acta Orthop Belg 2010; 76 (04) 507-512
  • 43 Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide: AOA; 2016
  • 44 Vince K. Mid-flexion instability after total knee arthroplasty: woolly thinking or a real concern?. Bone Joint J 2016; 98-B (1, Suppl A): 84-88
  • 45 Matziolis G, Brodt S, Windisch C, Roehner E. Changes of posterior condylar offset results in midflexion instability in single-radius total knee arthroplasty. Arch Orthop Trauma Surg 2017; 137 (05) 713-717
  • 46 Cross MB, Nam D, Plaskos C. , et al. Recutting the distal femur to increase maximal knee extension during TKA causes coronal plane laxity in mid-flexion. Knee 2012; 19 (06) 875-879
  • 47 Kowalczewski JB, Labey L, Chevalier Y, Okon T, Innocenti B, Bellemans J. Does joint line elevation after revision knee arthroplasty affect tibio-femoral kinematics, contact pressure or collateral ligament lengths? An in vitro analysis. Arch Med Sci 2015; 11 (02) 311-318
  • 48 König C, Matziolis G, Sharenkov A. , et al. Collateral ligament length change patterns after joint line elevation may not explain midflexion instability following TKA. Med Eng Phys 2011; 33 (10) 1303-1308
  • 49 Lin KJ, Wei HW, Huang CH. , et al. Change in collateral ligament length and tibiofemoral movement following joint line variation in TKA. Knee Surg Sports Traumatol Arthrosc 2016; 24 (08) 2498-2505
  • 50 Victor J, Luyckx T. Mid-flexion instability after total knee arthroplasty. In: Scott WN. , ed. Insall & Scott Surgery of the Knee. 6th ed. Philadelphia, PA: Elsevier/Churchill Livingstone; 2017: 1740-1749
  • 51 Babazadeh S, Dowsey MM, Swan JD, Stoney JD, Choong PF. Joint line position correlates with function after primary total knee replacement: a randomised controlled trial comparing conventional and computer-assisted surgery. J Bone Joint Surg Br 2011; 93 (09) 1223-1231
  • 52 Figgie III HE, Goldberg VM, Heiple KG, Moller III HS, Gordon NH. The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am 1986; 68 (07) 1035-1040
  • 53 Partington PF, Sawhney J, Rorabeck CH, Barrack RL, Moore J. Joint line restoration after revision total knee arthroplasty. Clin Orthop Relat Res 1999; (367) 165-171
  • 54 Porteous AJ, Hassaballa MA, Newman JH. Does the joint line matter in revision total knee replacement?. J Bone Joint Surg Br 2008; 90 (07) 879-884
  • 55 Bellemans J. Restoring the joint line in revision TKA: does it matter?. Knee 2004; 11 (01) 3-5
  • 56 Ritter MA, Montgomery TJ, Zhou H, Keating ME, Faris PM, Meding JB. The clinical significance of proximal tibial resection level in total knee arthroplasty. Clin Orthop Relat Res 1999; (360) 174-181
  • 57 Selvarajah E, Hooper G. Restoration of the joint line in total knee arthroplasty. J Arthroplasty 2009; 24 (07) 1099-1102
  • 58 Snider MG, Macdonald SJ. The influence of the posterior cruciate ligament and component design on joint line position after primary total knee arthroplasty. J Arthroplasty 2009; 24 (07) 1093-1098
  • 59 Minoda Y, Nakagawa S, Sugama R, Ikawa T, Noguchi T, Hirakawa M. Midflexion laxity after implantation was influenced by the joint gap balance before implantation in TKA. J Arthroplasty 2015; 30 (05) 762-765
  • 60 Hosseini A, Qi W, Tsai TY, Liu Y, Rubash H, Li G. In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee. Knee Surg Sports Traumatol Arthrosc 2015; 23 (10) 3055-3061
  • 61 Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G. Erratum to “The change in length of the medial and lateral collateral ligaments during in vivo knee flexion”. Knee 2006; 13 (01) 77-82
  • 62 Athwal KK, Daou HE, Kittl C, Davies AJ, Deehan DJ, Amis AA. The superficial medial collateral ligament is the primary medial restraint to knee laxity after cruciate-retaining or posterior-stabilised total knee arthroplasty: effects of implant type and partial release. Knee Surg Sports Traumatol Arthrosc 2016; 24 (08) 2646-2655
  • 63 Whiteside LA, Saeki K, Mihalko WM. Functional medical ligament balancing in total knee arthroplasty. Clin Orthop Relat Res 2000; (380) 45-57
  • 64 Chen W, Nagamine R, Kondo K, Todo M. Effect of medial soft-tissue releases during posterior-stabilised total knee arthroplasty. J Orthop Surg (Hong Kong) 2011; 19 (02) 230-233
  • 65 Minoda Y, Nakagawa S, Sugama R. , et al. Intraoperative assessment of midflexion laxity in total knee prosthesis. Knee 2014; 21 (04) 810-814
  • 66 Yoon JR, Jeong HI, Oh KJ, Yang JH. In vivo gap analysis in various knee flexion angles during navigation-assisted total knee arthroplasty. J Arthroplasty 2013; 28 (10) 1796-1800
  • 67 Dimitriou D, Tsai TY, Park KK. , et al. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: in-vivo surgical transepicondylar axis and geometric center axis analyses. J Biomech 2016; 49 (09) 1891-1898