RSS-Feed abonnieren
DOI: 10.1055/s-0039-1690005
Cu(OTf)2-Catalyzed Beckmann Rearrangement of Ketones Using Hydroxylamine-O-sulfonic Acid (HOSA)
Publikationsverlauf
Received: 04. Juni 2019
Accepted after revision: 27. Juni 2019
Publikationsdatum:
16. Juli 2019 (online)
Abstract
The Beckmann rearrangement (BKR) of ketones to secondary amides often requires harsh reaction conditions that limit its practicality and scope. Herein, the Cu(OTf)2-catalyzed BKR of ketones under mild reaction conditions using hydroxylamine-O-sulfonic acid (HOSA), a commercial water soluble aminating agent, is described. This method is compatible with most functional groups and directly provides the desired amides in good to excellent yields.
#
Key words
hydroxylamine-O-sulfonic acid (HOSA) - ketone - Beckmann rearrangement - Cu(OTf)2 - secondary amideThe Beckmann rearrangement (BKR) is a popular method for the formation of amides from ketones and aldehydes via an oxime intermediate.[1] The conversion of an oxime into an amide was done first by the German chemist Ernst Otto Beckmann in 1886.[2] Notably, the BKR enjoys a prominent industrial role including the manufacture of monomer for polymerization into nylon-6 and nylon-12.[3] Also, amides are common components in drugs, natural products, agrochemicals, and functional materials (Figure [1]).[4] [5]
The traditional BKR requires harsh conditions such as high reaction temperatures and strongly acidic media, thus restricting the variety of suitable substrates; often, the process requires isolation of the oxime intermediate, which can be labile and involves a cumbersome purification process (Scheme [1a,b]).[6] More recent modifications have addressed these limitations via catalysis with transition metals,[7] calcium complexes,[8] organocatalysts,[9] [10] [11] [12] [13] inorganic Lewis acids,[14] and boronic acids.[15] Nevertheless, the need for a mild, inexpensive, and environmentally friendly procedure, especially for the direct conversion from ketones,[16] still persists.
Hydroxylamine-O-sulfonic acid (HOSA) attracted our attention for the BKR because it is commercial, inexpensive, water soluble, and readily handled.[17] Indeed, it has found sporadic utility in the BKR,[18] but primarily with aliphatic ketones. With aromatic ketones or hindered systems, strong acid and/or high temperatures are still required.[19] Fortuitously, we had observed early transition metal salts, especially Cu(OTf)2, accelerated the condensation and rearrangement of aromatic ketones with HOSA.
a Reaction conditions: Cu(OTf)2 (0.1equiv), HOSA (2 equiv), CsOH·H2O (2 equiv), TFE/CH2Cl2 (1:4), rt, 14 h. TFE = 2,2,2-trifluoroethanol. NR: No reaction.
b Recovered 1a; 0% recovered = 100% consumed.
To actualize our aim, an introductory study was done using 2-methoxyacetophenone (1a) as a representative substrate along with HOSA and Cu(OTf)2 at room temperature (Table [1]). Our investigation to optimize the reaction parameters to obtain amide 2a from 1a showed that a base was needed to commence the reaction. With lithium hydroxide (LiOH), 95% of the starting material 1a was consumed and the expected amide was obtained in 85% yield along with 10% of oxime 3a (Table [1], entry 1). The most satisfactory result was achieved with cesium hydroxide monohydrate (CsOH·H2O) in which the desired amide 2a was obtained in 88% yield (entry 7) whereas other mild bases were not very effective (entries 2–5) or in the case of K2CO3 proved ineffective (entry 6).
Finally, a variety of solvents were screened including hexafluoroisopropanol (HFIP), 2,2,2-trifluoroethanol (TFE), methanol, ethyl alcohol, tetrahydrofuran (THF), acetonitrile, dichloromethane, and a mixture of TFE/CH2Cl2 (1:4) (Table [1]). While HFIP and TFE delivered amide 2a in comparable yields (83% and 84%, respectively; Table [1], entries 8 and 9), a mixture of TFE/CH2Cl2 was best for both the yield of amide 2a (88%, entry 7) and for solubilization of ketones. Only acetonitrile, despite its frequent use in amidation reactions, failed to support the BKRs (entry 14).
Having established the optimum reaction conditions, the scope of the methodology was evaluated with a range of representative ketones (Scheme [2]). Generally, acetophenones with strong aryl electron-donating groups reacted smoothly at room temperature to deliver the derived N-phenylacetamides in very good yields, for example, phenol 2b, 4-methoxy 2c, 3,4-dimethoxy 2d, and 4-allyloxy 2e. The latter is notable for its chemoselectivity, that is, no allylic[20] or CH amination[21] or aziridination[17c] under the reaction conditions. In contrast, 4-tolyl 2f, phenyl 2g, and naphthyl 2h required heating for a reasonable reaction rate, although room temperature reactivity was restored in the homologous 2i, j. The halogenated ketones 2l–n were well behaved and provided good yields of amide, except for 4′-fluoroacetophenone which was less reactive, as it delivered the corresponding amide 2k in 25% yield only at 70 °C in 24 hours. The BKR of benzophenone and 3-acetyindole furnished 2o and 2p, respectively, albeit in modest yields. Lactams 2q–t were readily obtained from the corresponding cyclic ketones in high yields. Following upon well-established migratory priorities, estrone 3-methyl ether and hex-2-one led to 2u and 2v, respectively.
We propose the Cu(OTf)2 has a dual role in catalyzing the BKR (Scheme [3]). First, as a mild Lewis acid, it assists in the formation of the transient ketoxime intermediate A that could be observed in some cases. Second, by way of the five-membered transition state B, the copper catalyzes the migration of the R1 group to the nitrogen from which the Beckmann product is finally obtained.
In conclusion, we have developed an operationally simple, one-pot BKR route to secondary amides directly from ketones using inexpensive, easily handled HOSA as aminating agent via Cu(II)-catalysis.
Reactions, unless otherwise stated, were carried out with magnetic stirring open to the atmosphere in oven-dried glassware. Reagents were used as received, unless otherwise noted. For TLC precoated plates (Merck silica gel 60, F254) were used and visualized with UV light and/or charring after dipping in PMA or KMnO4 solution. The compounds were purified by triturating the crude reaction mixture under hexane or by flash column chromatography using silica gel (100–200 mesh) with EtOAc/hexane as eluent. 1H and 13C NMR spectra were recorded at 400 and 100 MHz, respectively, in CDCl3 or DMSO-d 6 as solvent. Chemical shifts δ are reported in parts per million (ppm) relative to residual undeuterated solvent as an internal reference (1H δ = 7.26 and 13C δ = 77.0 for CDCl3, δ = 2.50 and 39.52 for DMSO-d 6, respectively). Standard abbreviations are used to indicate NMR peak multiplicities.
#
Amides from Ketones; General Procedure
To a stirred solution of Cu(OTf)2 (0.05 mmol, 10 mol%) in TFE/CH2Cl2 (1:4, 2–3 mL) were added ketone (0.5 mmol, 1.0 equiv), HOSA (2.0 equiv), and CsOH·H2O (2.0 equiv) at rt. The reaction mixture was maintained at the temperature and for the time indicated in Scheme [2]. After completion, the mixture was diluted with CH2Cl2 (10 mL) and washed with sat. aq Na2CO3 (3 × 5 mL). The combined organic layers were washed with brine (5 mL) and dried (anhyd Na2SO4). The crude product obtained after removal of all volatiles in vacuo was purified by SiO2 (100–200 mesh) chromatography using EtOAc/hexane as eluent.
#
N-(2-Methoxyphenyl)acetamide (2a)[22]
Yield: 73 mg (88%); white solid; mp 72–74 °C.
1H NMR (400 MHz, CDCl3): δ = 8.35 (dd, J = 7.9, 1.7 Hz, 1 H), 7.77 (s, 1 H), 7.03 (td, J = 7.8, 1.7 Hz, 1 H), 6.95 (td, J = 7.8, 1.5 Hz, 1 H), 6.87 (dd, J = 8.1, 1.5 Hz, 1 H), 3.88 (s, 3 H), 2.20 (s, 3 H).
#
N-(4-Hydroxyphenyl)acetamide (2b)[23]
Yield: 60 mg (80%); brown solid; mp 170–171 °C.
1H NMR (400 MHz, DMSO-d 6): δ = 9.64 (s, 1 H), 9.13 (s, 1 H), 7.33 (d, J = 8.9 Hz, 2 H), 6.67 (d, J = 8.9 Hz, 2 H), 1.98 (s, 3 H).
#
N-(4-Methoxyphenyl)acetamide (2c)[15]
Yield: 82 mg (86%); white solid; mp 129–130 C.
1H NMR (400 MHz, CDCl3): δ = 7.41–7.35 (m, 2 H), 6.87–6.81 (m, 2 H), 3.78 (s, 3 H), 2.14 (s, 3 H).
#
N-(3,4-Dimethoxyphenyl)acetamide (2d)[24]
Yield: 78 mg (80%); white solid; mp 126–127.7 °C.
1H NMR (400 MHz, CDCl3): δ = 7.30 (d, J = 2.3 Hz, 1 H), 6.87–6.70 (m, 2 H), 3.86 (s, 3 H), 3.85 (s, 3 H), 2.15 (s, 3 H).
#
N-[4-(Allyloxy)phenyl]acetamide (2e)[25]
Yield: 82 mg (86%); white solid; mp 94–95 °C.
1H NMR (400 MHz, CDCl3): δ = 7.37 (d, J = 8.7 Hz, 2 H), 7.14 (s, 1 H), 6.87 (d, J = 8.8 Hz, 2 H), 6.04 (ddd, J = 21.8, 10.4, 5.2 Hz, 1 H), 5.40 (d, J = 17.3 Hz, 1 H), 5.28 (d, J = 10.5 Hz, 1 H), 4.51 (d, J = 5.1 Hz, 2 H), 2.15 (s, 3 H).
#
N-(p-Tolyl)acetamide (2f)[23]
Yield: 63 mg (85%); white solid; mp 151–152 °C.
1H NMR (400 MHz, CDCl3): δ = 7.37 (d, J = 8.3 Hz, 2 H), 7.25 (br s, 1 H), 7.11 (d, J = 8.1 Hz, 2 H), 2.31 (s, 3 H), 2.15 (s, 3 H).
#
N-Phenylacetamide (2g)[26]
Yield: 54 mg (80%); white solid; mp 114–115 °C.
1H NMR (400 MHz, CDCl3): δ = 7.49 (d, J = 7.7 Hz, 2 H), 7.31 (t, J = 7.9 Hz, 2 H), 7.10 (t, J = 7.4 Hz, 1 H), 2.17 (s, 3 H).
#
N-(Naphthalen-2-yl)acetamide(2h)[27]
Yield: 65 mg (70%); off-white solid; mp133–135 °C.
1H NMR (400 MHz, CDCl3): δ = 8.18 (br s, 1 H), 7.80–7.77 (m, 3 H), 7.48–7.37 (m, 4 H), 2.24 (s, 3 H).
#
N-Phenylpropionamide (2i)[13]
Yield: 63 mg (85%); white solid; mp 107–108 °C.
1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 8.0 Hz, 2 H), 7.30 (t, J = 8.0 Hz, 2 H), 7.26 (br, 1 H), 7.10 (t, J = 7.4 Hz, 1 H), 2.38 (q, J = 7.6 Hz, 2 H), 1.24 (t, J = 7.6 Hz, 3 H).
#
N-Phenylisobutyramide (2j)[9]
Yield: 88 mg (81%); white solid; mp 109–111 °C.
1H NMR (400 MHz, CDCl3): δ = 7.53 (d, J = 8.0 Hz, 2 H), 7.31 (t, J = 7.8 Hz, 2 H), 7.09 (t, J = 7.3 Hz, 1 H), 2.51 (sept, J = 6.8 Hz, 1 H), 1.25 (d, J = 6.8 Hz, 6 H).
#
N-(4-Fluorophenyl)acetamide (2k)[28]
Yield: 19 mg (25%); white solid; mp 153–154.6 °C.
1H NMR (400 MHz, CDCl3): δ = 7.45 (dd, J = 8.8, 4.8 Hz, 2 H), 7.31 (br s, 1 H), 7.00 (t, J = 8.6 Hz, 2 H), 2.16 (s, 3 H).
#
N-(4-Bromophenyl)acetamide (2l)[28]
Yield: 65 mg (60%); white solid; mp 167–169 °C.
1H NMR (400 MHz, CDCl3): δ = 7.47–7.36 (m, 4 H), 7.23 (br s, 1 H), 2.17 (s, 3 H).
#
N-(3-Bromophenyl)acetamide (2m)[29]
Yield: 75 mg (70%); white solid; mp 81–83 °C.
1H NMR (400 MHz, CDCl3): δ = 7.81 (s, 1 H), 7.69 (s, 1 H), 7.45 (d, J = 7.8 Hz, 1 H), 7.29 (dd, J = 16.1, 4.4 Hz, 1 H), 7.20 (t, J = 7.9 Hz, 1 H), 2.22 (s, 3 H).
#
N-(2,4-Dichlorophenyl)acetamide (2n)[30]
Yield: 38 mg (70%); brown solid; mp 142–144 °C.
1H NMR (400 MHz, CDCl3): δ = 8.34 (d, J = 8.7 Hz, 1 H), 7.55 (s, 1 H), 7.38 (d, J = 1.7 Hz, 1 H), 7.28–7.22 (m, 1 H), 2.24 (s, 3 H).
#
N-Phenylbenzamide (2o)[13]
Yield: 49 mg (50%); white solid; mp 164–165 °C.
1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 7.8 Hz, 2 H), 7.80 (s, 1 H), 7.64 (d, J = 8.1 Hz, 2 H), 7.56 (t, J = 7.0 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.38 (t, J = 7.8 Hz, 2 H), 7.16 (t, J = 7.2 Hz, 1 H).
#
N-(1-Tosyl-1H-indol-3-yl)acetamide (2p)[15]
Yield: 82 mg (50%); white solid; mp 193–194 °C.
1H NMR (400 MHz, CDCl3): δ = 8.20 (s, 1 H), 8.07 (d, J = 8.3 Hz, 1 H), 7.76 (d, J = 8.4 Hz, 2 H), 7.41–7.32 (m, 2 H), 7.28–7.26 (m, 1 H), 7.25–7.22 (m, 1 H), 7.18 (d, J = 8.0 Hz, 2 H), 2.31 (s, 3 H), 2.24 (s, 3 H).
#
7-Phenylazepan-2-one (2q)[31]
Yield: 76 mg (80%); white solid; mp 134–136 °C.
1H NMR (400 MHz, CDCl3): δ = 7.41–7.21 (m, 5 H), 6.18 (br s, 1 H), 4.46 (d, J = 9.3 Hz, 1 H), 2.66–2.49 (m, 2 H), 2.11–1.83 (m, 4 H), 1.76–1.57 (m, 2 H).
13C NMR (101 MHz, CDCl3): δ = 177.93, 141.92, 129.18, 128.22, 126.24, 58.85, 36.91, 36.79, 29.78, 22.91.
#
1,3,4,5-Tetrahydro-2H-benzo[b]azepin-2-one (2r)[27]
Yield: 61 mg (75%); white solid; mp 137–139 °C.
1H NMR (400 MHz, CDCl3): δ = 7.56 (br s, 1 H), 7.25–7.20 (m, 2 H), 7.16–7.10 (m, 1 H), 6.96 (d, J = 7.6 Hz, 1 H), 2.80 (t, J = 7.2 Hz, 2 H), 2.36 (t, J = 7.3 Hz, 2 H), 2.27–2.21 (m, 2 H).
#
Azacyclotetradecan-2-one (2s)[32]
Yield: 96 mg (89%); white solid; mp 155–157 °C.
1H NMR (400 MHz, CDCl3): δ = 5.57 (br s, 1 H), 3.36–3.26 (m, 2 H), 2.25–2.15 (m, 2 H), 1.76–1.61 (m, 2 H), 1.54–1.44 (m, 2 H), 1.43–1.20 (m, 16 H).
13C NMR (101 MHz, CDCl3): δ = 173.10, 38.46, 36.27, 28.31, 26.49, 25.79, 25.71, 25.63, 25.41, 25.26, 23.95, 23.70, 23.13.
#
5-(tert-Butyl)azepan-2-one (2t)[33]
Yield: 73 mg (85%); semi-solid.
1H NMR (400 MHz, CD3OD): δ = 3.33–3.25 (m, 2 H), 2.58–2.48 (m, 1 H), 2.16 (td, J = 13.4, 4.9 Hz, 1 H), 2.07–1.94 (m, 2 H), 1.84 (td, J = 13.9, 5.4 Hz, 1 H), 1.37–1.14 (m, 3 H), 0.90 (s, 9 H).
13C NMR (101 MHz, CD3OD): δ = 167.50, 48.46, 33.23, 32.60, 28.76, 27.91, 27.64, 26.76.
#
(4aS,4bR,10bS,12aS)-8-Methoxy-12a-methyl-3,4,4a,4b,5,6,10b,11,12,12a-decahydronaphtho[2,1-f]quinolin-2(1H)-one (2u)[34]
Yield: 126 mg (85%); white solid; mp 220–222 °C.
1H NMR (400 MHz, CDCl3): δ = 7.18 (d, J = 8.6 Hz, 1 H), 6.76–6.46 (m, 3 H), 3.77 (s, 3 H), 2.93–2.79 (m, 2 H), 2.56–2.34 (m, 4 H), 2.15–1.99 (m, 2 H), 1.89–1.81 (m, 1 H), 1.77–1.66 (m, 1 H), 1.58–1.25 (m, 5 H), 1.19 (s, 3 H).
13C NMR (101 MHz, CDCl3): δ = 171.96, 157.65, 137.57, 131.79, 126.17, 113.52, 111.69, 55.21, 54.49, 46.49, 43.28, 39.85, 39.34, 30.65, 29.88, 26.67, 26.21, 22.19, 19.83.
#
N-Butylacetamide (2v)[35]
Yield: 82 mg (50%); clear oil.
1H NMR (400 MHz, CDCl3): δ = 5.66 (s, 1 H), 3.26–3.18 (m, 2 H), 1.95 (s, 3 H), 1.52–1.41 (m, 2 H), 1.38–1.28 (m, 2 H), 0.90 (t, J = 7.3 Hz, 3 H).
#
#
Acknowledgment
S. V. expresses her thanks to CSIR, New Delhi, India for the research fellowship.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690005.
- Supporting Information
-
References
- 1a Vinnik MI, Zarakhani NG. Russ. Chem. Soc. 1967; 36: 51
- 1b Krow GR. Tetrahedron 1981; 37: 1283
- 1c Gawley RE. Org. React. 1988; 35: 1
- 1d Katritzky AR, Monteux DA, Tymoshenko DO. Org. Lett. 1999; 1: 577
- 1e Smith MB, March J. Advance Organic Chemistry, 5th ed. Wiley; New York: 2001. 1415; and references cited therei
- 1f Chandrasekhar S. In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 770
- 1g Holth TA. D, Hutt OE, Georg GI, Rojas CM. In Molecular Rearrangements in Organic Synthesis . Rojas CM. Wiley; New York: 2015: 111-150
- 1h Zhang W, Yang S, Lin Q, Cheng H, Liu J. J. Org. Chem. 2019; 84: 851
- 3a Luedeke VD. In Encyclopedia of Chemical Processing and Design, Vol. 6. Mcketta JJ. Marcel Dekker; New York: 1978: 72-95
- 3b Rademacher H. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A8. Gerhartz W. Wiley; New York: 1987: 201
- 3c Weber JN. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 19. Kroschwitz JI. Wiley; New York: 1990: 500
- 3d Palmer RJ. Encyclopedia of Polymer Science and Technology, 4th ed. Wiley; New York: 2001
- 3e Wessermel K, Arpe H.-J. Industrial Organic Chemistry, 4th ed. Wiley-VCH; Weinheim: 2003: 239
- 3f Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
- 3g You K, Mao L, Yin D, Liu P, Luo H. Catal. Commun. 2008; 9: 1521
- 4a The Chemistry of Amides . Zabicky J. Wiley-Interscience; New York: 1970
- 4b The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. Wiley; New York: 2000
- 4c Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 4d Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
- 4e Pathare SP, Jain AK. H, Akamanchi KG. RSC Adv. 2013; 3: 7697
- 4f Rao SN, Mohana DC, Adimurthy S. RSC Adv. 2015; 5: 95313
- 5a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 5b Larock RC. Comprehensive Organic Transformatins, 2nd ed. Wiley-VCH; Weinheim: 1999: 1234
- 5c Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
- 5d Selvamurugan S, Ramachandran R, Prakash G, Viswanathamurthi P, Malecki JG, Endo A. J. Organomet. Chem. 2016; 803: 119
- 6a Kalia J, Raines RT. Angew. Chem. Int. Ed. 2008; 47: 7523
- 6b Jain PU, Samant SD. ChemistrySelect 2018; 3: 1967
- 6c See also refs. 7–15, 17–19.
- 7a Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
- 7b Crochet P, Cadierno V. Chem. Commun. 2015; 51: 2495
- 7c Martinez-Asencio A, Yus M, Ramon DJ. Tetrahedron 2012; 68: 3948
- 8 Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654
- 9 Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
- 10 Betti C, Landini D, Maia A, Pasi M. Synlett 2008; 908
- 11 Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
- 12 Zhu M, Cha C, Deng W.-P, Shi X.-X. Tetrahedron Lett. 2006; 47: 4861
- 13 Pi H.-J, Dong J.-D, An N, Du W, Deng W.-P. Tetrahedron 2009; 65: 7790
- 14 Zicmanis A, Katkevica S, Mekss P. Catal. Commun. 2009; 10: 614
- 15 Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
- 16a Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
- 16b Mahajan S, Sharma B, Kapoor KK. Tetrahedron Lett. 2015; 56: 1915
- 17a Wallace RG. Aldrichimica Acta 1980; 13: 3
- 17b Erdik E, Saczewski J. Hydroxylamine-O-sulfonic AcideEROS Encyclopedia of Reagents for Organic Synthesis. Wiley; Hoboken: 2013: 1
- 17c Ma Z, Zhou Z, Kürti L. Angew. Chem. Int. Ed. 2017; 56: 9886
- 17d Sabir S, Kumar G, Jat JL. Org. Biomol. Chem. 2018; 16: 3314
- 18 Olah GA, Fung AP. Synthesis 1979; 537
- 19a Sanford JK, Blair FT, Arroya J, Sherk KW. J. Am. Chem. Soc. 1945; 67: 1941
- 19b Freeman JP. J. Org. Chem. 1961; 26: 3507
- 20 Du Bois J. Org. Process Res. Dev. 2011; 15: 758
- 21 Munnuri S, Anugu RR, Falck JR. Org. Lett. 2019; 21: 1926
- 22 Srivastava VP, Patel R, Garima, Yadav LD. S. Chem. Commun. 2010; 46: 5808
- 23 Gao Y, Liu J, Li Z, Guo T, Xu S, Zhu H, Wei F, Chen S, Gebru H, Guo K. J. Org. Chem. 2018; 83: 2040
- 24 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
- 25 Schmidt B, Wolf F. J. Org. Chem. 2017; 82: 4386
- 26 Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 27 Luca LD, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272
- 28 Mahajan PS, Humne VT, Tanpure SD, Mhaske SB. Org. Lett. 2016; 18: 3450
- 29 Pialat A, Liegault B, Taillefer M. Org. Lett. 2013; 15: 1764
- 30 Singh H, Sen C, Sahoo T, Ghosh SC. Eur. J. Org. Chem. 2018; 4748
- 31 Tokuyama H, Itabashi S, Shimomura M, Sato M, Azuma H, Okano K, Sakata J, Hidetoshi T. Synlett 2018; 29: 1786
- 32 Mudiyanselage AY, Viamajala S, Varanasi S, Yamamoto K. ACS Sustainable Chem. Eng. 2014; 2: 2831
- 33 Aube J, Wang Y, Hammond M, Tanol M, Takusagawa F, Velde DV. J. Am. Chem. Soc. 1990; 112: 4879
- 34 Liu Z.-J, Lu X, Wang G, Li L, Jiang W.-T, Wang Y.-D, Xiao B, Fu Y. J. Am. Chem. Soc. 2016; 138: 9714
- 35 Steffel LR, Cashman TJ, Reutershan MH, Linton BR. J. Am. Chem. Soc. 2007; 129: 12956
-
References
- 1a Vinnik MI, Zarakhani NG. Russ. Chem. Soc. 1967; 36: 51
- 1b Krow GR. Tetrahedron 1981; 37: 1283
- 1c Gawley RE. Org. React. 1988; 35: 1
- 1d Katritzky AR, Monteux DA, Tymoshenko DO. Org. Lett. 1999; 1: 577
- 1e Smith MB, March J. Advance Organic Chemistry, 5th ed. Wiley; New York: 2001. 1415; and references cited therei
- 1f Chandrasekhar S. In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 770
- 1g Holth TA. D, Hutt OE, Georg GI, Rojas CM. In Molecular Rearrangements in Organic Synthesis . Rojas CM. Wiley; New York: 2015: 111-150
- 1h Zhang W, Yang S, Lin Q, Cheng H, Liu J. J. Org. Chem. 2019; 84: 851
- 3a Luedeke VD. In Encyclopedia of Chemical Processing and Design, Vol. 6. Mcketta JJ. Marcel Dekker; New York: 1978: 72-95
- 3b Rademacher H. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A8. Gerhartz W. Wiley; New York: 1987: 201
- 3c Weber JN. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 19. Kroschwitz JI. Wiley; New York: 1990: 500
- 3d Palmer RJ. Encyclopedia of Polymer Science and Technology, 4th ed. Wiley; New York: 2001
- 3e Wessermel K, Arpe H.-J. Industrial Organic Chemistry, 4th ed. Wiley-VCH; Weinheim: 2003: 239
- 3f Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
- 3g You K, Mao L, Yin D, Liu P, Luo H. Catal. Commun. 2008; 9: 1521
- 4a The Chemistry of Amides . Zabicky J. Wiley-Interscience; New York: 1970
- 4b The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. Wiley; New York: 2000
- 4c Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 4d Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
- 4e Pathare SP, Jain AK. H, Akamanchi KG. RSC Adv. 2013; 3: 7697
- 4f Rao SN, Mohana DC, Adimurthy S. RSC Adv. 2015; 5: 95313
- 5a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 5b Larock RC. Comprehensive Organic Transformatins, 2nd ed. Wiley-VCH; Weinheim: 1999: 1234
- 5c Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
- 5d Selvamurugan S, Ramachandran R, Prakash G, Viswanathamurthi P, Malecki JG, Endo A. J. Organomet. Chem. 2016; 803: 119
- 6a Kalia J, Raines RT. Angew. Chem. Int. Ed. 2008; 47: 7523
- 6b Jain PU, Samant SD. ChemistrySelect 2018; 3: 1967
- 6c See also refs. 7–15, 17–19.
- 7a Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
- 7b Crochet P, Cadierno V. Chem. Commun. 2015; 51: 2495
- 7c Martinez-Asencio A, Yus M, Ramon DJ. Tetrahedron 2012; 68: 3948
- 8 Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654
- 9 Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
- 10 Betti C, Landini D, Maia A, Pasi M. Synlett 2008; 908
- 11 Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
- 12 Zhu M, Cha C, Deng W.-P, Shi X.-X. Tetrahedron Lett. 2006; 47: 4861
- 13 Pi H.-J, Dong J.-D, An N, Du W, Deng W.-P. Tetrahedron 2009; 65: 7790
- 14 Zicmanis A, Katkevica S, Mekss P. Catal. Commun. 2009; 10: 614
- 15 Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
- 16a Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
- 16b Mahajan S, Sharma B, Kapoor KK. Tetrahedron Lett. 2015; 56: 1915
- 17a Wallace RG. Aldrichimica Acta 1980; 13: 3
- 17b Erdik E, Saczewski J. Hydroxylamine-O-sulfonic AcideEROS Encyclopedia of Reagents for Organic Synthesis. Wiley; Hoboken: 2013: 1
- 17c Ma Z, Zhou Z, Kürti L. Angew. Chem. Int. Ed. 2017; 56: 9886
- 17d Sabir S, Kumar G, Jat JL. Org. Biomol. Chem. 2018; 16: 3314
- 18 Olah GA, Fung AP. Synthesis 1979; 537
- 19a Sanford JK, Blair FT, Arroya J, Sherk KW. J. Am. Chem. Soc. 1945; 67: 1941
- 19b Freeman JP. J. Org. Chem. 1961; 26: 3507
- 20 Du Bois J. Org. Process Res. Dev. 2011; 15: 758
- 21 Munnuri S, Anugu RR, Falck JR. Org. Lett. 2019; 21: 1926
- 22 Srivastava VP, Patel R, Garima, Yadav LD. S. Chem. Commun. 2010; 46: 5808
- 23 Gao Y, Liu J, Li Z, Guo T, Xu S, Zhu H, Wei F, Chen S, Gebru H, Guo K. J. Org. Chem. 2018; 83: 2040
- 24 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
- 25 Schmidt B, Wolf F. J. Org. Chem. 2017; 82: 4386
- 26 Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 27 Luca LD, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272
- 28 Mahajan PS, Humne VT, Tanpure SD, Mhaske SB. Org. Lett. 2016; 18: 3450
- 29 Pialat A, Liegault B, Taillefer M. Org. Lett. 2013; 15: 1764
- 30 Singh H, Sen C, Sahoo T, Ghosh SC. Eur. J. Org. Chem. 2018; 4748
- 31 Tokuyama H, Itabashi S, Shimomura M, Sato M, Azuma H, Okano K, Sakata J, Hidetoshi T. Synlett 2018; 29: 1786
- 32 Mudiyanselage AY, Viamajala S, Varanasi S, Yamamoto K. ACS Sustainable Chem. Eng. 2014; 2: 2831
- 33 Aube J, Wang Y, Hammond M, Tanol M, Takusagawa F, Velde DV. J. Am. Chem. Soc. 1990; 112: 4879
- 34 Liu Z.-J, Lu X, Wang G, Li L, Jiang W.-T, Wang Y.-D, Xiao B, Fu Y. J. Am. Chem. Soc. 2016; 138: 9714
- 35 Steffel LR, Cashman TJ, Reutershan MH, Linton BR. J. Am. Chem. Soc. 2007; 129: 12956