Synthesis, Table of Contents Synthesis 2019; 51(21): 4078-4084DOI: 10.1055/s-0039-1690178 paper © Georg Thieme Verlag Stuttgart · New York A Straightforward Conversion of Activated Amides and Haloalkanes into Esters under Transition-Metal-Free Cs2CO3/DMAP Conditions Junsheng Jian , Zijia Wang∗ School of Chemistry and Environment, South China Normal University, Guangzhou, P. R. of China Email: wslnwzj@foxmail.com Email: zhuoz@scnu.edu.cn , Liuqing Chen , Ying Gu , Liqiong Miao , Yueping Liu , Zhuo Zeng∗ School of Chemistry and Environment, South China Normal University, Guangzhou, P. R. of China Email: wslnwzj@foxmail.com Email: zhuoz@scnu.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract The esterification of activated amides, N-acylsaccharins, under transition-metal-free conditions with good functional group tolerance has been developed, resulting in C–N cleavage leading to efficient synthesis of a variety of esters in moderate to good yields. This work demonstrates that esterification may proceed by using simple N-acylsaccharins, haloalkanes, and Cs2CO3 as oxygen source. Key words Key wordsesterification - amides - metal-free - haloalkanes - C–N cleavage Full Text References References 1a Brink G.-J, Arends IW. C. E, Sheldon RA. Chem. Rev. 2004; 104: 4105 1b Yang N, Su Z, Feng X, Hu C. Chem. Eur. J. 2015; 21: 7264 1c Shimizu N, Sakata D, Schmelz EA, Mori N, Kuwahara Y. Proc. Natl. Acad. Sci. U.S.A. 2017; 11: 2616 2 Gopinath R, Patel BK. Org. Lett. 2000; 2: 577 3 Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534 4 Kiyooka S, Wada Y, Ueno M, Yokoyama T, Yokoyama R. Tetrahedron 2007; 63: 12695 5 Konakahara T, Kiran Y, Ikeda R, Sakai N. Synthesis 2010; 276 6a Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300 6b Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542 6c Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790 6d Kano T, Mii H, Maruoka K. J. Am. Chem. Soc. 2009; 131: 3450 6e Wang Z, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 4790 6f Raghuvanshi K, Rauch K, Ackermann L. Chem. Eur. J. 2015; 21: 1790 7a Ouyang K, Hao W, Zhang WX, Xi Z. Chem. Rev. 2015; 115: 12045 7b Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864 7c Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589 7d Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2352 7e Buchspies J, Szostak M. Catalysts 2019; 9: 53 8a Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79 8b Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554 8c Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934 8d Hie LE, Baker L, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129 8e Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75 8f Dander JE, Baker EL, Garg NK. Chem. Sci. 2017; 8: 6433 8g Meng G, Lalancette R, Szostak R, Szostak M. Org. Lett. 2017; 19: 4656 8h Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043 8i Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614 8j Li G, Szostak M. Nat. Commun. 2018; 9: 4165 8k Liu Y, Achtenhagen M, Liu R, Szostak M. Org. Biomol. Chem. 2018; 16: 1322 8l Boit TB, Weires NA, Kim J, Garg NK. ACS Catal. 2018; 8: 1003 8m Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864 9 Li G, Lei P, Szostak M. Org. Lett. 2018; 20: 5622 10a Ren L, Wang L, Lv Y, Li G, Gao S. Org. Lett. 2015; 17: 5172 10b Wang L, Li J, Dai W, Lv Y, Zhang Y, Gao S. Green Chem. 2014; 16: 2164 11a Ueno S, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 6098 11b Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587 11c Liu C, Meng G, Szostak M. J. Org. Chem. 2016; 81: 12023 11d Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194 11e Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959 11f Liu Y, Liu R, Szostak M. Org. Biomol. Chem. 2017; 15: 1780 11g Cong X, Fan F, Ma P, Luo M, Chen H, Zeng X. J. Am. Chem. Soc. 2017; 139: 15182 11h Szostak R, Liu C, Lalancette R, Szostak M. J. Org. Chem. 2018; 83: 14676 12a Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem. Commun. 2016; 52: 2076 12b Wu H, Li Y, Cui M, Jian J, Zeng Z. Adv. Synth. Catal. 2016; 358: 3876 12c Wu H, Liu T, Cui M, Li Y, Jian J, Wang H, Zeng Z. Org. Biomol. Chem. 2017; 15: 536 12d Cui M, Chen Z, Liu T, Wang H, Zeng Z. Tetrahedron Lett. 2017; 58: 3819 12e Wu H, Guo W, Daniel S, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444 12f Luo Z, Liu T, Guo W, Wang Z, Huang J, Zhu Y, Zeng Z. Org. Process Res. Dev. 2018; 22: 1188 12g Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950 Supplementary Material Supplementary Material Supporting Information