Key words selective N-alkylation - 2-(arylamino)ethanols - amines - 2-aryloxyethanols - phenols - K
2 CO
3 promoted - Na
2 CO
3 controlled
N-Alkylation of amines is central to the synthesis of synthetic intermediates,[1 ] fine chemicals,[2 ] pharmaceuticals,[3 ] agrochemicals,[4 ] dyes,[5 ] rubbers,[6 ] and polymers.[7 ] Likewise, O -alkyl phenols are applied in paints, varnishes, printing inks, foaming agents, synthetic resins, and perfumes.[8 ] Moreover, many important drug molecules have N -alkyl moieties, including Metronidazole® , Fluphenazine® , Quetiapine® , Vildagliptin® , Ticlopidine® , and Ditazole® (Figure [1 ]).
Figure 1 Drug molecules having N -alkyl and O -alkyl moieties
Under standard conditions, amines commonly undergo over-alkylation,[9 ] which leads to mixtures of secondary and tertiary amines and quaternary ammonium salts instead of the desired mono-N-alkylation products. Methods for preparing N -alkyl amines include direct N-alkylation of primary amines with alkyl halides,[10 ] reduction of amides,[11 ] reductive amination of aldehydes with primary amines in the presence of reducing agents,[12 ] N-dealkylation of tertiary amines,[13 ] C–N bond-coupling reactions,[14 ] and transition-metal-catalyzed direct alkylation of amines with alcohols by the borrowing hydrogen strategy.[3 ]
[15 ] N-Alkylation of amines can be achieved by using various alkyl sources such as alkyl halides,[16 ] alcohols,[3,17 ] dimethyl carbonate,[17f ]
[18 ] ethylene glycol,[19 ] epoxides,[20 ] 2-chloroethanol,[21 ] CO2 ,[22 ] and ZnEt2 .[23 ] In addition, various inorganic bases have been employed, such as K2 CO3 ,[24 ] NaHCO3 ,[25 ] NaH,[26 ] CsOH·H2 O,[27 ] and Cs2 CO3 .[28 ] In addition methods have been described using ionic liquids[29 ] and N -sulfonamides[8 ]
[30 ] with alkyl halides. Recently, N-alkylation of anilines with alcohols has been performed efficiently by using Mn,[31 ] Ni,[32 ] and Ru[33 ] metal catalysts and alkyl halides on silica.[34 ]
Similarly, O-alkylation of phenols is commonly carried out by Williamson’s ether synthesis[35 ] and C–O bond-coupling reactions[36 ] with alkyl halides. For O-alkylation of phenols the alkylating agents include alkyl halides,[37 ] alcohols,[38 ] dimethyl carbonate,[39 ] allylic carboxylates,[40 ] ethylene carbonate,[41 ] methyl formate,[35b ] 2-chloroethanol,[42 ] and epoxides.[43 ] Equally, various inorganic bases have been employed, including NaOH,[44 ] NaH,[45 ] K2 CO3 ,[24a ]
[42 ]
[43b ]
[46 ] and Cs2 CO3 ,[47 ] and ionic liquids have also been used.[48 ]
Nevertheless, the development of new methodologies for selective mono-N-alkylation and O-alkylation protocols continues to be a major challenge. Therefore, the development of effective methods for such conversions continues to be a focus of attention. In particular, most traditional methods for the synthesis of aryl ethers require harsh conditions, such as strong bases and high temperatures,[35a ]
[49 ] and are incompatible with a range of functional groups..
Herein, we report a selective and simple protocol to synthesize 2-(arylamino)ethanols from a range of primary aromatic amines and 2-aryloxyethanols from several phenols with 2-chloroethanol, promoted by K2 CO3 in methanol (Table 1 and Schemes 1–2) . The corresponding mono-N-alkylated 2-(phenylamino)ethanol products are isolated with high selectivity (81–96%) and moderate to excellent yields (64–80%). Similarly, O-alkylated 2-phenoxyethanol products can also be synthesized with moderate to excellent yields (60–99%). A wide range of functional groups is tolerated due to the mild reaction conditions for both N- and O-alkylation.
In preliminary reactions, 4-methylaniline (1c ) was treated with 2-chloroethanol (2a ) in the presence of an organic base (1 equiv) such as triethylamine or N ,N -diisopropylethylamine (DIPEA) with methanol as solvent at ambient temperature, when 27–34% yield of the desired mono-N-alkylated product 3c and 35–38% of di-N-alkylated product 4c were isolated (Table [1 ], entries 1 and 2). By using inorganic bases such as Na2 CO3 , NaHCO3 and KHCO3 , the reactions were unsuccessful, with negligible yields of 3c and 4c being observed (entries 3–5). Other bases, such as K2 CO3 , Cs2 CO3 , K3 PO4 , NaOH, KOH, and NaOMe, were found to be effective, but did not selectively furnish mono-N-alkylated product 3c (entries 6–11). While some selectivity was observed towards mono-N-alkylated product 3c with K2 CO3 and, being aware of the relative solubility of K2 CO3 in methanol,[50 ] to control the over-alkylation, the reaction was carried out without any solvent, but satisfactory results were still not observed (entry 12).
Table 1 Selected Reaction Optimisation Observationsa
Entry
Base (equiv)
Additive (equiv)
Solvent (volume, mL)
Time (h)
Conv. (%)b
Yieldb (selectivity)c (%)
Ratio of 3 /4
3
4
1
triethylamine (1)
–
methanol (2.5)
12
72
34 (47)
38 (53)
47:53
2
DIPEA (1)
–
methanol (2.5)
12
62
27 (44)
35 (56)
44:56
3
Na2 CO3 (1)
–
methanol (2.5)
12
1
1 (100)
ND
100:0
4
NaHCO3 (1)
–
methanol (2.5)
12
1
1 (100)
ND
100:0
5
KHCO3 (1)
–
methanol (2.5)
12
1
1 (100)
ND
100:0
6
K2 CO3 (1)
–
methanol (2.5)
12
78
45 (58)
33 (42)
58:42
7
Cs2 CO3 (1)
–
methanol (2.5)
12
72
20 (28)
52 (72)
28:72
8
K3 PO4 (1)
–
methanol (2.5)
12
75
25 (33)
50 (67)
33:67
9
NaOH (1)
–
methanol (2.5)
12
85
27 (32)
58 (68)
32:68
10
KOH (1)
–
methanol (2.5)
12
87
25 (29)
62 (71)
29:71
11
NaOMe (1)
–
methanol (2.5)
12
95
30 (32)
65 (68)
32:68
12
K2 CO3 (1)
–
–
12
75
32 (43)
43 (57)
43:57
13
K2 CO3 (1)
Na2 CO3 (1)
methanol (2.5)
12
80
49 (61)
31 (39)
61:39
14
K2 CO3 (1)
Na2 CO3 (2)
methanol (2.5)
12
85
64 (74)
20 (26)
74:26
15
K2 CO3 (1)
Na2 CO3 (3)
methanol (2.5)
6
91
76 (84)
15 (16)
84 :16
16
K2 CO3 (1)
NaHCO3 (3)
methanol (2.5)
12
80
65 (81)
15 (19)
81:19
17
K2 CO3 (1)
KHCO3 (3)
methanol (2.5)
12
83
68 (82)
15 (18)
82:18
18
triethylamine (1)
Na2 CO3 (3)
methanol (2.5)
12
75
33 (44)
42 (56)
44:56
19
Cs2 CO3 (1)
Na2 CO3 (3)
methanol (2.5)
12
88
55 (63)
33 (38)
63:38
20
K3 PO4 (1)
Na2 CO3 (3)
methanol (2.5)
12
90
36 (40)
54 (60)
40:60
21
K2 CO3 (1)
Na2 CO3 (3)
acetonitrile (2.5)
24
3
3 (100)
ND
100:0
22
K2 CO3 (1)
Na2 CO3 (3)
acetone (2.5)
24
3
3 (100)
ND
100:0
23
K2 CO3 (1)
Na2 CO3 (3)
dichloromethane (2.5)
24
1
1 (100)
ND
100:0
24
K2 CO3 (1)
Na2 CO3 (3)
THF (2.5)
24
2
2 (100)
ND
100:0
25
K2 CO3 (1)
Na2 CO3 (3)
toluene (2.5)
24
3
3 (100)
ND
100:0
26
K2 CO3 (1)
Na2 CO3 (3)
1,4-dioxane (2.5)
24
ND
ND
ND
100:0
27
K2 CO3 (1)
Na2 CO3 (3)
DMF (2.5)
24
10
10 (100)
ND
100:0
28
K2 CO3 (1)
Na2 CO3 (3)
DMSO (2.5)
24
7
7 (100)
ND
100:0
29
K2 CO3 (1)
Na2 CO3 (3)
NMP (2.5)
24
5
5 (100)
ND
100:0
30
K2 CO3 (1)
Na2 CO3 (3)
ethanol (2.5)
12
89
69 (78)
20 (22)
78:22
31
K2 CO3 (1)
Na2 CO3 (3)
isopropyl alcohol (2.5)
12
87
62 (71)
25 (29)
71:29
32d
K2 CO3 (1)
Na2 CO3 (3)
methanol (2.5)
12
55
50 (91)
5 (9)
91:9
33e
K2 CO3 (1)
Na2 CO3 (3)
methanol (2.5)
12
76
67 (88)
9 (12)
88:12
34f
K2 CO3 (1)
Na2 CO3 (3)
methanol (2.5)
12
99
70 (71)
29 (29)
71:29
a Reaction conditions (0.5 g scale): 1c (4.67 mmol, 1 equiv), 2a (3 equiv), base (1–3 equiv), additives (1–3 equiv), solvent (2.5 mL) at room temperature. All reagent and substrate addition was carried out at room temperature (25 °C).
b Isolated yields.
c Selectivities are given in parentheses.
d 2-Chloroethanol (2a ) (1 equiv).
e 2-Chloroethanol (2a ) (2 equiv).
f Reaction temperature initially at ambient temperature then increased to 40 °C and then heated to reflux.
After a revaluation of all the trials, it was clear that 1 equivalent of Na2 CO3 , NaHCO3 and KHCO3 showed low conversions but the selectivity was high; whereas 1 equivalent of K2 CO3 promoted the reaction with a 3c/4c selectivity up to 58:42. Hence, the decision was made to use a mixture of 1 equivalent of K2 CO3 and 1–3 equivalents of Na2 CO3 ; whereupon, dramatic improvements in both selectivity and conversion were obtained (entries 13–15). Among these conditions, 3 equiv of Na2 CO3 was most effective; under these conditions improvements in both selectivity (3c /4c , 84:16) and conversion (91%) were obtained, with 76% isolated yield of desired product 3c and only 15% yield of product 4c (entry 15). To examine the effect of Na2 CO3 on this conversion, the reaction was carried out by replacing the Na2 CO3 with NaHCO3 and KHCO3 ; in these cases slight decreases in selectivity and conversion were observed (entries 16 and 17). Changing K2 CO3 with triethylamine, Cs2 CO3 and K3 PO4 led to a decrease in selectivity (entries 18–20).
Subsequently, various solvents such as acetonitrile, acetone, dichloromethane, THF, toluene, 1,4-dioxane, DMF, DMSO and NMP were screened, but none were successful (Table [1 ], entries 21–29), indicating that methanol is the most efficient solvent for this reaction. To examine the effect of alcoholic solvents on conversion and selectivity, reactions were carried out with ethanol and isopropanol, but decreases in selectivity were observed (entries 30–31). To examine the effect of the concentration of 2-chloroethanol on the reaction, experiments were performed using 1 and 2 equivalent of 2-chloroethanol 2a , whereupon a notable decrease in both selectivity and conversion was observed (entries 32 and 33). At the end of this study, one experiment was performed by varying the temperature from ambient temperature up to 40 °C and then at reflux, but decreased selectivity at the higher temperature was observed (entry 34).
It was therefore concluded that the reaction is efficient and selective for mono-N-alkylation using 1 equiv of 1a , 3 equiv of 2a , 1 equiv of K2 CO3 , 3 equiv of Na2 CO3 and 2.5 mL of methanol at room temperature.
With the optimized conditions established, mono-N-alkylation of a range of aromatic amines with 2a was performed (Table [2 ]). It was observed that anilines containing electron-donating groups such as Me, and OMe underwent conversion smoothly with excellent selectivity for mono-N-alkylated products with good yields. Electron-withdrawing groups such as NO2 and COOH at ortho - and para -positions did not show any conversion, presumably due to decreased nucleophilicity of the amino group. However, a nitro group at the meta -position gave high selectivity and moderate yield of 3g . For halogen-substituted anilines, better conversions were seen at all ortho , meta and para positions to give 3h –o with an increase in the selectivity for mono-N-alkylated products.
Table 2 Scope of Selective Mono-N-alkylation of Aromatic Amines with 2-Chloroethanol Promoted by K2 CO3 –Na2 CO3
a
Entry
R1
R2
R3
R4
R5
Prod.
Conv. (%)
Yieldb (selectivity)c (%)
Ratio of 3/4
3
4
1
H
H
H
H
H
3a /4a
88
73 (83)
15 (17)
83:17
2
Me
H
H
H
H
3b /4b
85
75 (88)
10 (12)
88:12
3
H
H
Me
H
H
3c /4c
91
76 (84)
15 (16)
84:16
4
Me
H
Me
H
H
3d /4d
89
77 (87)
12 (13)
87:13
5
OMe
H
H
H
H
3e /4e
85
66 (81)
15 (19)
81:19
6
H
H
OMe
H
H
3f /4f
81
80 (94)
5 (6)
94:6
7
H
NO2
H
H
H
3g /4g
69
64 (93)
5 (7)
93:7
8
Cl
H
H
H
H
3h /4h
80
72 (90)
8 (10)
90:10
9
H
Cl
H
H
H
3i /4i
82
69 (84)
13 (16)
84:16
10
H
H
Cl
H
H
3j /4j
83
71 (86)
12 (14)
86:14
11
H
H
Br
H
H
3k /4k
80
74 (93)
6 (8)
93:8
12
H
F
H
H
H
3l /4l
91
76 (84)
15 (16)
84:16
13
Cl
Cl
H
H
H
3m /4m
82
79 (96)
3 (4)
96:4
14
Me
H
Br
H
H
3n /4n
84
72 (86)
12 (14)
86:14
15
Me
F
H
H
H
3o /4o
79
72 (91)
7 (9)
91:9
a Reaction conditions: Amine 1 (0.5 g, 1 equiv), 2a (3 equiv), K2 CO3 (1 equiv), Na2 CO3 (3 equiv), MeOH (2.5 mL, 5 volume), at room temperature stirring for 2–24 h.
b Isolated yields are given.
c Selectivities are given in parentheses.
The strategy was further extended towards O-alkylation of various substituted phenols 5 with 2a to give moderate to excellent yields (Scheme [1, ] 6a –s ). These reactions also demonstrated similar effects on conversion for substrates with substituents having electron-donating or electron-withdrawing groups and steric hindrance at the ortho , meta and para positions. The conditions were also compatible with a range of functional groups, such as alkyl, methoxy, nitro, halide, ester, and aldehyde.
Scheme 1 Scope of O-alkylation of phenols with 2-chloroethanol promoted by K2 CO3 . Reagents and conditions : Phenol 5 (0.5 g, 1 equiv), 2a (3 equiv), K2 CO3 (3 equiv), MeOH (2.5 mL, 5 volume), at room temperature stirring for 5–24 h. Isolated yields are given.
Finally, to demonstrate the synthetic potential of the developed protocol toward the synthesis of commercially important drugs, the formal synthesis of Ticlopidine® ,[51 ] Vildagliptin® ,[52 ] Quetiapine® ,[53 ] and Gemfibrozil®
[54 ] (Scheme [2 ]) was explored.
The formal synthesis of these four drug molecules was achieved by using the developed protocol with modifications of the reaction conditions as given in Scheme [2 ]. The products formed are in good agreement with those obtained by using the previously reported methods and they were obtained in competitive yields.[51 ]
[52 ]
[53 ]
[54 ] This protocol will help to improve industrial processes that can be applied in the synthesis of such drugs.
Scheme 2 Formal syntheses of Ticlopidine® , Vildagliptin® , Quetiapine® , and Gemfibrozil®
In conclusion, a simple method to attain selective mono-N-alkylation of aromatic and aliphatic primary amines with high selectivity and O-alkylation of phenols with excellent conversion, promoted by K2 CO3 and controlled by Na2 CO3 in methanol at room temperature is presented herein. The mild conditions allow broad functional group tolerance for both amines and phenols. Simple operational and workup procedures make this process applicable for scale-up.
All chemicals were obtained from Sigma–Aldrich, Alfa Aesar, Spectrochem, Avra Synthesis or TCI Europe and used as received without purification. Laboratory grade solvents used for reaction, extraction and column chromatography were purchased from Finar chemicals. The progress of reactions was checked by analytical thin-layer chromatography (TLC Silica gel 60 F254 plates). The plates were visualized first with short-wavelength UV light, followed by staining with iodine.
Melting points were determined with an open capillary tube. GC-MS analyses were recorded with a Shimadzu QP-Ultra 2010 GCMS system with MS detector (EI mode, 70 eV) and Rxi-624Sil MS column (30 m, 0.32 mm ID, 1.80 μm). The major signals are quoted in m /z with the relative intensity in parentheses. Analyses used an injector temperature of 250 °C; ion source temperature of 200 °C, interface temperature of 260 °C and column flow 5 mL min–1 helium, column initial temperature (T
0 ) = 60 °C, hold time (t ) = 2 min, ramp = 20 °C min–1 , final temperature (T
1 ) = 240 °C, hold time (t ) = 9 to 39 min. LCMS spectra were recorded with a Shimadzu LCMS-8030 system with a triple quadrupole mass spectrometer in electrospray ionization (ESI) mode.
1 H and 13 C NMR spectra were recorded in CDCl3 or DMSO-d
6 with a Bruker Avance-III 500 MHz spectrometer using TMS as an internal standard. The residual solvent signals were used (CDCl3 : δH = 7.16–7.32 ppm, DMSO-d
6 : δH = 2.51 ppm). Infrared spectra were recorded with a Shimadzu IR MIRacle 10 with diamond ATR.
Synthesis of 2-(Arylamino)ethanols; Typical Procedure
Synthesis of 2-(Arylamino)ethanols; Typical Procedure
To a mixture of amine 1 (0.5 g, 1 equiv) and 2-chloroethanol 2a (3 equiv) in a round-bottom flask, K2 CO3 (1 equiv), Na2 CO3 (3 equiv), and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) then reaction mass was stirred for 5 minutes and extracted with EtOAc or dichloromethane (10 mL). The organic layer was then washed with cold water (10 mL), dried over anhydrous Na2 SO4 , filtered and concentrated under vacuum to obtain the crude mixture of products and unreacted amine. Pure mono-N-alkylated amine 3 , di-N-alkylated amine 4 and unreacted amine 1 were obtained after column chromatography.
Synthesis of 2-Aryloxyethanols; Typical Procedure
Synthesis of 2-Aryloxyethanols; Typical Procedure
To a mixture of phenol 5 (0.5 g, 1 equiv) and 2-chloroethanol 2a (3 equiv) in a round-bottom flask, K2 CO3 (3 equiv) and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) and 1 M aq. KOH (10 mL), then the reaction mass was stirred for 5 minutes and extracted with dichloromethane (10 mL). The organic layer was then washed with 1 M aq. KOH (10 mL), dried over anhydrous Na2 SO4 filtered and concentrated under vacuum to obtain the pure product 6 without need for further purification.
Formal Synthesis of Ticlopidine® (3p)
Formal Synthesis of Ticlopidine® (3p)
To a mixture of amine 1p (0.5 g, 1 equiv) and alkyl chloride 2b (1.2 equiv) in a round-bottom flask, K2 CO3 (3 equiv) and MeOH (5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) then stirred for 5 minutes and extracted with EtOAc (10 mL). The organic layer was washed with cold water (10 mL), dried over anhydrous Na2 SO4 , filtered and concentrated under vacuum to obtain the crude product. Column chromatography afforded pure 3p .
Formal Synthesis of Vildagliptin® (3q)
Formal Synthesis of Vildagliptin® (3q)
To a mixture of amine 1q (0.5 g, 1 equiv) and alkyl chloride (2c ) (1.2 equiv) in a round-bottom flask, K2 CO3 (1 equiv), Na2 CO3 (1 equiv), and MeOH (2.5 mL) were added and the flask was closed with a septum. The mixture was stirred at r.t. and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with MeOH (10 mL) and filtered. Evaporation of the solvent gave a residue, which was recrystallized from EtOAc/MeOH (1:1) to obtain pure 3q .
Formal Synthesis of Quetiapine® (3r)
Formal Synthesis of Quetiapine® (3r)
To a mixture of amine 1r (0.5 g, 1 equiv) and alkyl chloride 2d (2.5 equiv) in a round-bottom flask, K2 CO3 (3 equiv), and MeOH (5 mL)/isobutanol (5 mL) were added and the flask was fitted with a condenser. The mixture was stirred at 110 °C and the progress of the reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL), stirred for 5 minutes and extracted with EtOAc (10 mL). The organic layer was washed with cold water (10 mL), dried over anhydrous Na2 SO4 , filtered and concentrated under vacuum to obtain crude 3r . Column chromatography afforded pure product.
Formal Synthesis of Gemfibrozil® (7)
Formal Synthesis of Gemfibrozil® (7)
To a mixture of phenol 5f (0.5 g, 1 equiv) and alkyl halide 2e (3 equiv) in a round-bottom flask, K2 CO3 (3 equiv) and MeOH (1.5 mL)/isobutanol (1.5 mL) were added and the flask was fitted with a condenser. The mixture was stirred at 110 °C and the progress of reaction was monitored by TLC. After completion, the mixture was diluted with cold water (10 mL) and 1 M aq. KOH (10 mL), stirred for 5 minutes and extracted with dichloromethane (10 mL). The organic extract was washed with 1 M aq. KOH (10 mL), dried over anhydrous Na2 SO4 , filtered and concentrated under vacuum to obtain a mixture of products 6t and 6u .
In a round-bottom flask the mixture of products 6t and 6u was dissolved in 10 M aq. NaOH solution (10 mL) and toluene (10 mL) was added. The mixture was heated to reflux for 5 h and the progress of the reaction was monitored by TLC. After completion, the mixture was cooled, acidified with dilute HCl, stirred for 1 h and extracted with toluene (10 mL). The organic extract was dried over anhydrous Na2 SO4 , filtered and concentrated under vacuum to obtain pure 7 .
2-(Phenylamino)ethanol (3a)
2-(Phenylamino)ethanol (3a)
Yield: 0.5367 g (73%); yellow-brown oil; Rf
= 0.60 (hexanes/EtOAc, 65:35).
IR (neat): 3341, 3009, 2940, 2870, 1767, 1597, 1504, 1381, 1319, 1242, 1126, 1057, 872, 748, 694, 625, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.17 (dd, J = 8.4, 7.4 Hz, 2 H, HAr ), 6.73 (t, J = 7.3 Hz, 1 H, HAr ), 6.62 (d, J = 7.7 Hz, 2 H, HAr ), 3.74 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.26 (br s, 1 H, NH), 3.26 (br s, 1 H, OH), 3.22 (t, J = 5.2 Hz, 2 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 148.05, 129.38 (2C), 118.09, 113.44 (2C), 61.07, 46.22.
GCMS (EI, 70 eV): m /z calcd for C8 H11 NO: 137.18; found: 137.
2-(o -Tolylamino)ethanol (3b)
2-(o -Tolylamino)ethanol (3b)
Yield: 0.5290 g (75%); dark-brown oil; Rf
= 0.55 (hexanes/EtOAc, 65:35).
IR (neat): 3379, 2932, 2855, 1759, 1512, 1450, 1381, 1319, 1250, 1134, 748, 895, 525 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.16–7.08 (m, 1 H, HAr ), 7.06 (d, J = 7.3 Hz, 1 H, HAr ), 6.68 (t, J = 7.4 Hz, 1 H, HAr ), 6.63 (d, J = 8.0 Hz, 1 H, HAr ), 3.82 (t, J = 5.3 Hz, 2 H, O-CH2 ), 3.30 (t, J = 5.3 Hz, 2 H, O-CH2 ), 2.88 (br s, 1 H, NH), 2.88 (br s, 1 H, OH), 2.15 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 146.01, 130.29, 127.17, 122.69, 117.59, 110.18, 61.15, 46.06, 17.53.
GCMS (EI, 70 eV): m /z calcd for C9 H13 NO: 151.21; found: 151.
2-(p -Tolylamino)ethanol (3c)
2-(p -Tolylamino)ethanol (3c)
Yield: 0.5365 g (76%); brown solid; mp 33–36 °C; Rf
= 0.60 (hexanes/EtOAc, 65:35).
IR (neat): 3364, 2955, 2909, 2847, 1759, 1612, 1512, 1450, 1381, 1296, 1242, 1057, 1018, 980, 941, 918, 810, 718, 694, 617, 540, 463 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.91 (d, J = 8.2 Hz, 2 H, HAr ), 6.49 (d, J = 8.4 Hz, 2 H, HAr ), 3.68 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.15 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.91 (br s, 1 H, NH), 2.91 (br s, 1 H, OH), 2.16 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 145.84, 129.84 (2C), 127.31, 113.59 (2C), 61.22, 46.57, 20.44.
GCMS (EI, 70 eV): m /z calcd for C9 H13 NO: 151.21; found: 151.
2-(2,4-Dimethylphenylamino)ethanol (3d)
2-(2,4-Dimethylphenylamino)ethanol (3d)
Yield: 0.5250 g (77%); brown oil; Rf
= 0.65 (hexanes/EtOAc, 60:40).
IR (neat): 3310, 2909, 2855, 1759, 1612, 1512, 1443, 1381 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.85 (d, J = 8.1 Hz, 1 H, HAr ), 6.82 (s, 1 H, HAr ), 6.48 (d, J = 8.1 Hz, 1 H, HAr ), 3.75 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.22 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.59 (br s, 1 H, NH), 2.59 (br s, 1 H, OH), 2.15 (s, 3 H, CH3 ), 2.06 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 143.66, 131.17, 127.36, 126.88, 122.93, 110.55, 61.20, 46.42, 20.36, 17.47.
GCMS (EI, 70 eV): m /z calcd for C10 H15 NO: 165.23; found: 165.
2-(2-Methoxyphenylamino)ethanol (3e)
2-(2-Methoxyphenylamino)ethanol (3e)
Yield: 0.4480 g (66%); dark-brown oil; Rf
= 0.40 (hexanes/EtOAc 50:50).
IR (neat): 3418, 2932, 2878, 1759, 1597, 1512, 1450, 1381, 1242, 1134, 1049, 903, 741, 625, 586, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.86 (td, J = 7.7, 1.4 Hz, 1 H, HAr ), 6.78 (dd, J = 7.9, 1.2 Hz, 1 H, HAr ), 6.70 (td, J = 7.8, 1.5 Hz, 1 H, HAr ), 6.65 (dd, J = 7.8, 1.3 Hz, 1 H, HAr ), 3.83 (s, 3 H, O-CH3 ), 3.822 (t, J = 5.3 Hz, 2 H, O-CH2 ), 3.30 (t, J = 5.3 Hz, 2 H, N-CH2 ), 3.08 (br s, 1 H, NH), 3.08 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 147.20, 137.93, 121.28, 117.17, 110.38, 109.61, 61.28, 55.44, 46.00.
GCMS (EI, 70 eV): m /z calcd for C9 H13 NO2 : 167.21; found: 167.
2-(4-Methoxyphenylamino)ethanol (3f)
2-(4-Methoxyphenylamino)ethanol (3f)
Yield: 0.5436 g (80%); dark-brown oil; Rf
= 0.50 (hexanes/EtOAc, 40:60).
IR (neat): 3356, 2943, 2832, 2361, 1759, 1508, 1462, 1234, 1180, 1126, 1030, 899, 822, 629, 567, 521 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.81–6.75 (m, 2 H, HAr ), 6.65–6.57 (m, 2 H, HAr ), 3.76 (t, J = 5.2 Hz, 2 H, N-CH2 ), 3.74 (s, 3 H, O-CH3 ), 3.20 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.03 (br s, 1 H, OH), 3.03 (br s, 1 H, NH).
13 C NMR (126 MHz, CDCl3 ): δ = 152.53, 142.26, 114.87 (4C), 61.16, 55.82, 47.22.
GCMS (EI, 70 eV): m /z calcd for C9 H13 NO2 : 167.21; found: 167.
2-(3-Nitrophenylamino)ethanol (3g)
2-(3-Nitrophenylamino)ethanol (3g)
Yield: 0.4221 g (64%); dark-red solid; mp 46–50 °C; Rf
= 0.60 (hexanes/EtOAc, 50:50).
IR (neat): 3395, 2986, 2955, 2932, 2870, 1805, 1767, 1620, 1582, 1520, 1342, 1242, 1165, 1119, 1065, 988, 856, 787, 733, 671, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.60–7.46 (m, 1 H, HAr ), 7.38 (d, J = 4.3 Hz, 1 H, HAr ), 7.33–7.21 (m, 1 H, HAr ), 6.90 (dd, J = 8.2, 2.2 Hz, 1 H, HAr ), 4.55 (br s, 1 H, NH), 3.87 (t, J = 4.9 Hz, 2 H, O-CH2 ), 3.33 (br s, 2 H, N-CH2 ), 2.45 (br d, J = 54.8 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 149.29, 149.06, 129.78, 119.20, 112.14, 106.43, 60.86, 45.68.
GCMS (EI, 70 eV): m /z calcd for C8 H10 N2 O3 : 182.18; found: 182.
2-(2-Chlorophenylamino)ethanol (3h)
2-(2-Chlorophenylamino)ethanol (3h)
Yield: 0.4847 g (72%); yellow oil; Rf
= 0.50 (hexanes/EtOAc, 70:30).
IR (neat): 3395, 2994, 2940, 2878, 1759, 1597, 1504, 1458, 1373, 1319, 1242, 1142, 1034, 918, 895, 741, 687, 532 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.28–7.22 (m, 1 H, HAr ), 7.12 (td, J = 8.2, 1.5 Hz, 1 H, HAr ), 6.71–6.59 (m, 2 H, HAr ), 4.57 (br s, 1 H, NH), 3.81 (t, J = 5.3 Hz, 2 H O-CH2 ), 3.31 (t, J = 5.3 Hz, 2 H N-CH2 ), 2.45 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 143.96, 129.29, 127.87, 119.60, 117.72, 111.52, 61.03, 45.75.
GCMS (EI, 70 eV): m /z calcd for C8 H10 ClNO: 171.62; found: 171.
2-(3-Chlorophenylamino)ethanol (3i)
2-(3-Chlorophenylamino)ethanol (3i)
Yield: 0.4643 g (69%); dark-brown liquid; Rf
= 0.50 (hexanes/EtOAc, 70:30).
IR (neat): 3348, 3341, 2932, 2870, 1767, 1597, 1481, 1404, 1327, 1242, 1057, 988, 934, 841, 764, 687, 586 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.99 (t, J = 8.0 Hz, 1 H, HAr ), 6.61 (dd, J = 7.8, 1.4 Hz, 1 H, HAr ), 6.53 (t, J = 2.1 Hz, 1 H, HAr ), 6.42 (dd, J = 8.2, 2.1 Hz, 1 H, HAr ), 3.72 (t, J = 5.2 Hz, 2 H O-CH2 ), 3.17 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.41 (br s, 1 H, NH), 2.41 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 149.29, 135.06, 130.28, 117.67, 112.74, 111.59, 61.03, 45.84.
GCMS (EI, 70 eV): m /z calcd for C8 H10 ClNO: 171.62; found: 171.
2-(4-Chlorophenylamino)ethanol (3j)
2-(4-Chlorophenylamino)ethanol (3j)
Yield: 0.4782 g (71%); off-white solid; mp 72–75 °C; Rf
= 0.52 (hexanes/EtOAc, 70:30).
IR (neat): 3186, 2940, 2901, 2855, 1759, 1597, 1497, 1427, 1396, 1312, 1265, 1242, 1119, 1057, 903 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.20–7.06 (m, 2 H, HAr ), 6.58–6.52 (m, 2 H, HAr ), 3.80 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.23 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.81 (br s, 1 H, NH), 2.81 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 146.72, 129.13 (2C), 122.43, 114.31 (2C), 61.08, 46.15.
GCMS (EI, 70 eV): m /z calcd for C8 H10 ClNO; 171.62; found: 171.
2-(4-Bromophenylamino)ethanol (3k)
2-(4-Bromophenylamino)ethanol (3k)
Yield: 0.4648 g (74%); off-white solid; mp 80–84 °C; Rf
= 0.60 (hexanes/EtOAc, 60:40).
IR (neat): 3302, 3163, 2932, 2847, 1759, 1589, 1489, 1420, 1389, 1312, 1242, 1119, 1057, 995, 903, 810, 679, 594, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.29–7.07 (m, 2 H, HAr ), 6.54–6.37 (m, 2 H, HAr ), 3.96 (br s, 1 H, NH), 3.73 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.17 (t, J = 5.2 Hz, 2 H, N-CH2 ), 1.96 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 147.15, 132.00 (2C), 114.78 (2C), 109.45, 61.08, 46.03.
GCMS (EI, 70 eV): m /z calcd for C8 H10 BrNO: 216.08; found: 216.
2-(3-Fluorophenylamino)ethanol (3l)
2-(3-Fluorophenylamino)ethanol (3l)
Yield: 0.5307 g (76%); brown oil; Rf
= 0.55 (hexanes/EtOAc, 70:30).
IR (neat): 3379, 2932, 2878, 1759, 1620, 1589, 1497, 1450, 1373, 1335, 1242, 1180, 1150, 1111, 1057, 995, 964, 833, 764, 679, 633, 610, 579, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.99 (dd, J = 15.0, 8.1 Hz, 1 H, HAr ), 6.30 (m, 2 H, HAr ), 6.22 (dt, J = 11.6, 2.2 Hz, 1 H, HAr ), 3.67 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.33 (br s, 1 H, OH), 3.33 (br s, 1 H, NH), 3.12 (t, J = 5.2 Hz, 2 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 163.04 (d, J = 243.3 Hz), 148.87 (d, J = 10.6 Hz), 129.36 (d, J = 10.3 Hz), 108.06 (d, J = 2.3 Hz), 103.15 (d, J = 22.8 Hz), 98.74 (d, J = 25.3 Hz), 59.84, 44.88.
GCMS (EI, 70 eV): m /z calcd for C8 H10 FNO: 155.17; found: 155.
2-(2,3-Dichlorophenylamino)ethanol (3m)
2-(2,3-Dichlorophenylamino)ethanol (3m)
Yield: 0.5025 g (79%); off-white solid; mp 76–80 °C; Rf
= 0.60 (hexanes/EtOAc, 70:30).
IR (neat): 3387, 3341, 3271, 2955, 2878, 2353, 2322, 1759, 1589, 1497, 1450, 1412, 1319, 1250, 1111, 941, 887, 748, 633, 494 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.05 (t, J = 8.1 Hz, 1 H, HAr ), 6.80 (dd, J = 8.0, 1.2 Hz, 1 H, HAr ), 6.57 (dd, J = 8.3, 0.9 Hz, 1 H, HAr ), 4.78 (br s, 1 H, NH), 3.86 (t, J = 5.3 Hz, 2 H, O-CH2 ), 3.34 (t, J = 5.3 Hz, 2 H, N-CH2 ), 2.01 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 145.48, 133.00, 127.76, 118.32, 117.57, 109.24, 60.97, 45.85.
GCMS (EI, 70 eV): m /z calcd for C8 H9 Cl2 NO: 206.07; found: 206.
2-(4-Bromo-2-methylphenylamino)ethanol (3n)
2-(4-Bromo-2-methylphenylamino)ethanol (3n)
Yield: 0.4456 g (72%); off-white solid; mp 74–78 °C; Rf
= 0.52 (hexanes/EtOAc, 60:40).
IR (neat): 3310, 2916, 2847, 1759, 1597, 1504, 1458, 1396, 1358, 1319, 1273, 1242, 1142, 1088, 1065, 995, 856, 802 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.18 (dd, J = 8.5, 2.2 Hz, 1 H, HAr ), 7.15 (d, J = 1.8 Hz, 1 H, HAr ), 6.46 (d, J = 8.5 Hz, 1 H, HAr ), 3.82 (t, J = 5.2 Hz, 2 H, O-CH2 ), 3.82 (br s, 1 H, NH), 3.26 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.10 (s, 3 H, CH3 ), 2.10 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 145.12, 132.61, 129.65, 124.79, 111.57, 109.09, 60.98, 45.97, 17.29.
GCMS (EI, 70 eV): m /z calcd for C9 H12 BrNO: 230.1; found: 230.
2-(3-Fluoro-2-methylphenylamino)ethanol (3o)
2-(3-Fluoro-2-methylphenylamino)ethanol (3o)
Yield: 0.4868 g (72%); yellow-brown solid; mp 58–62 °C; Rf
= 0.57 (hexanes/EtOAc, 60:40).
IR (neat): 3395, 3302, 3210, 2932, 2893, 2855, 1759, 1620, 1582, 1520, 1450, 1381, 1319, 1288, 1234, 1134, 1049, 934, 887, 864, 756, 694, 640, 617, 579, 501 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.94 (dd, J = 15.0, 8.0 Hz, 1 H, HAr ), 6.38 (t, J = 8.8 Hz, 1 H, HAr ), 6.31 (d, J = 8.2 Hz, 1 H, HAr ), 3.74 (t, J = 5.3 Hz, 2 H, O-CH2 ), 3.21 (t, J = 5.2 Hz, 2 H, N-CH2 ), 2.71 (br s, 1 H, OH), 2.71 (br s, 1 H, NH), 1.96 (d, J = 1.3 Hz, 3 H).
13 C NMR (126 MHz, CDCl3 ): δ = 161.50 (d, J = 241.1 Hz), 147.72 (d, J = 7.0 Hz), 127.20 (d, J = 10.7 Hz), 109.16 (d, J = 18.6 Hz), 105.73 (d, J = 2.4 Hz), 104.48 (d, J = 23.85 Hz), 61.04, 46.16, 8.15 (d, J = 6.5 Hz).
GCMS (EI, 70 eV): m /z calcd for C9 H12 FNO: 169.2; found: 169.
2,2′-(Phenylazanediyl)diethanol (4a)
2,2′-(Phenylazanediyl)diethanol (4a)
Yield: 0.1451 g (15%); yellow-brown oil; Rf
= 0.30 (hexanes/EtOAc, 65:35).
IR (neat): 3287, 2963, 2878, 1767, 1597, 1504, 1358, 1242, 1049, 910, 856, 748, 694, 602, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.25–7.16 (m, 2 H, HAr ), 6.70 (t, J = 7.3 Hz, 1 H, HAr ), 6.64 (d, J = 8.2 Hz, 2 H, HAr ), 4.41 (br s, 2 H, OH), 3.73 (t, J = 4.9 Hz, 4 H, O-CH2 ), 3.48 (t, J = 4.9 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 147.80, 129.34 (2C), 116.80, 112.48 (2C), 60.64 (2C), 55.34 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H15 NO2 : 181.23; found: 181.
2,2′-(2-Methylphenylazanediyl)diethanol (4b)
2,2′-(2-Methylphenylazanediyl)diethanol (4b)
Yield: 0.0915 g (10%); yellow oil; Rf
= 0.29 (hexanes/EtOAc, 65:35).
IR (neat): 3325, 2940, 2878, 2824, 1759, 1597, 1489, 1443, 1373, 1242, 1157, 1049, 918, 872, 764, 725, 594 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.18 (dd, J = 18.2, 7.7 Hz, 3 H, HAr ), 7.05 (dd, J = 10.2, 4.4 Hz, 1 H, HAr ), 3.58 (t, J = 5.4 Hz, 4 H, O-CH2 ), 3.16 (t, J = 5.4 Hz, 4 H, N-CH2 ), 3.01 (br s, 2 H, OH), 2.35 (s, 3 H).
13 C NMR (126 MHz, CDCl3 ): δ = 149.31, 135.71, 131.38, 126.79, 125.02, 124.17, 60.01 (2C), 56.68 (2C), 18.31.
GCMS (EI, 70 eV): m /z calcd for C11 H17 NO2 : 195.26; found: 195.
2,2′-(4-Methylphenylazanediyl)diethanol (4c)
2,2′-(4-Methylphenylazanediyl)diethanol (4c)
Yield: 0.1365 g (15%); dark-brown oil; Rf
= 0.30 (hexanes/EtOAc, 60:40).
IR (neat): 3296, 2916, 2862, 1759, 1612, 1512, 1443, 1350, 1242, 1180, 1042, 910, 856, 802, 710, 610, 571, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.94 (d, J = 8.4 Hz, 2 H, HAr ), 6.51 (d, J = 8.6 Hz, 2 H, HAr ), 3.88 (br s, 2 H, OH), 3.66 (t, J = 4.9 Hz, 4 H, O-CH2 ), 3.38 (t, J = 4.9 Hz, 4 H, N-CH2 ), 2.16 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 145.75, 129.85 (2C), 126.29, 113.01 (2C), 60.70 (2C), 55.53 (2C), 20.20.
GCMS (EI, 70 eV): m /z calcd for C11 H17 NO2 : 195.26; found: 195.
2,2′-(2,4-Dimethylphenylazanediyl)diethanol (4d)
2,2′-(2,4-Dimethylphenylazanediyl)diethanol (4d)
Yield: 0.1030 g (12%); yellow oil; Rf
= 0.32 (hexanes/EtOAc, 60:40).
IR (neat): 3356, 2940, 2878, 1497, 1443, 1366, 1265, 1196, 1150, 1042, 1150, 1042, 872, 818, 571, 525 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.02 (d, J = 8.0 Hz, 1 H, HAr ), 6.94 (s, 1 H, HAr ), 6.91 (d, J = 8.1 Hz, 1 H, HAr ), 3.50 (t, J = 5.4 Hz, 4 H, O-CH2 ), 3.06 (t, J = 5.4 Hz, 4 H, N-CH2 ), 2.81 (br s, 2 H, OH), 2.24 (s, 3 H), 2.20 (s, 3 H).
13 C NMR (126 MHz, CDCl3 ): δ = 146.61, 135.51, 134.67, 132.02, 127.48, 124.15, 60.07 (2C), 56.99 (2C), 20.82, 18.17.
GCMS (EI, 70 eV): m /z calcd for C12 H19 NO2 : 209.28; found: 209.
2,2′-(2-Methoxyphenylazanediyl)diethanol (4e)
2,2′-(2-Methoxyphenylazanediyl)diethanol (4e)
Yield: 0.1275 g (15%); dark-brown oil; Rf
= 0.20 (hexanes/EtOAc, 50:50).
IR (neat): 3372, 2940, 2878, 2839, 1805, 1744, 1589, 1497, 1458, 1373, 1242, 1157, 1049, 910, 856, 748, 594, 532, 494 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.20 (dd, J = 7.8, 1.5 Hz, 1 H, HAr ), 7.14 (td, J = 8.1, 1.6 Hz, 1 H, HAr ), 6.96 (td, J = 7.6, 1.2 Hz, 1 H, HAr ), 6.92 (dd, J = 8.2, 0.9 Hz, 1 H, HAr ), 3.86 (s, 3 H, O-CH3 ), 3.50 (t, J = 5.2 Hz, 4 H, O-CH2 ), 3.25 (br s, 2 H, OH), 3.20 (t, J = 5.2 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 155.45, 138.15, 125.93, 125.08, 121.58, 111.64, 59.80, 57.31 (2C), 55.55 (2C).
GCMS (EI, 70 eV): m /z calcd for C11 H17 NO3 : 211.26; found: 211.
2,2′-(4-Methoxyphenylazanediyl)diethanol (4f)
2,2′-(4-Methoxyphenylazanediyl)diethanol (4f)
Yield: 0.0430 g (5%); brown oil; mp 44–48 °C; Rf
= 0.22 (hexanes/EtOAc, 40:60).
IR (neat): 3271, 2940, 2909, 2862, 2839, 1759, 1705, 1512, 1443, 1366, 1281, 1242 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.84–6.78 (m, 2 H, HAr ), 6.73–6.66 (m, 2 H, HAr ), 3.82 (br s, 2 H, OH), 3.74 (s, 3 H, O-CH3 ), 3.71 (t, J = 5.0 Hz, 4 H, O-CH2 ), 3.39 (t, J = 5.0 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 152.22, 142.60, 115.57 (2C), 114.88 (2C), 60.51, 55.98, 55.81.
GCMS (EI, 70 eV): m /z calcd for C11 H17 NO3 : 211.26; found: 211.
2,2′-(4-Nitrophenylazanediyl)diethanol (4g)
2,2′-(4-Nitrophenylazanediyl)diethanol (4g)
Yield: 0.0414 g (5%); dark-yellow oil; mp 92–94 °C; Rf
= 0.30 (hexanes/EtOAc, 50:50).
IR (neat): 3210, 2955, 2893, 2862, 1759, 1620, 1520, 1481, 1373, 1335, 1281, 1234, 1173, 1126, 1080, 1034, 995, 887, 849, 779, 733, 664, 594, 540 cm–1 .
1 H NMR (500 MHz, DMSO-d
6 ): δ = 7.47 (s, 1 H, HAr ), 7.42–7.34 (m, 2 H, HAr ), 7.19–7.09 (m, 1 H, HAr ), 4.85 (t, J = 5.2 Hz, 2 H, OH), 3.60 (dd, J = 11.3, 5.7 Hz, 4 H, O-CH2 ), 3.51 (t, J = 6.1 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, DMSO-d
6 ): δ = 149.49, 149.48, 130.40, 118.06, 109.61, 105.35, 58.34 (2C), 53.51 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 N2 O4 : 226.23; found: 226.
2,2′-(2-Chlorophenylazanediyl)diethanol (4h)
2,2′-(2-Chlorophenylazanediyl)diethanol (4h)
Yield: 0.0681 g (8%); yellow oil; Rf
= 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3294, 3063, 2932, 2870, 1759, 1636, 1589, 1474, 1373, 1242, 1119, 1049, 910, 864, 756, 671, 579, 525 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.40 (dd, J = 8.0, 1.4 Hz, 1 H, HAr ), 7.31 (dd, J = 8.0, 1.6 Hz, 1 H, HAr ), 7.25 (td, J = 7.6, 1.5 Hz, 1 H, HAr ), 7.10 (td, J = 8.0, 1.7 Hz, 1 H, HAr ), 3.59 (t, J = 5.3 Hz, 4 H, O-CH2 ), 3.27 (t, J = 5.3 Hz, 4 H, N-CH2 ), 2.92 (br s, 2 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 146.95, 132.55, 130.58, 127.89, 126.64, 126.30, 59.93 (2C), 56.72 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 ClNO2 : 215.68; found: 215.
2,2′-(3-Chlorophenylazanediyl)diethanol (4i)
2,2′-(3-Chlorophenylazanediyl)diethanol (4i)
Yield: 0.1094 g (13%); white solid; mp 88–93 °C; Rf
= 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3233, 3140, 2631, 2600, 2399, 2222, 2106, 1967, 1913, 1721, 1589, 1489, 1211, 988, 833, 764, 687 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.03 (t, J = 8.2 Hz, 1 H, HAr ), 6.60 (dd, J = 7.8, 1.3 Hz, 1 H, HAr ), 6.54 (t, J = 2.2 Hz, 1 H, HAr ), 6.44 (dd, J = 8.5, 2.3 Hz, 1 H, HAr ), 4.19 (br s, 2 H, OH), 3.70 (t, J = 4.8 Hz, 4 H, O-CH2 ), 3.43 (t, J = 4.9 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 148.92, 135.20, 130.22, 116.67, 112.32, 110.62, 60.55 (2C), 55.30 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 ClNO2 : 215.68; found: 215.
2,2′-(4-Chlorophenylazanediyl)diethanol (4j)
2,2′-(4-Chlorophenylazanediyl)diethanol (4j)
Yield: 0.1017 g (12%); off-white solid; mp 95–99 °C; Rf
= 0.26 (hexanes/EtOAc, 70:30).
IR (neat): 3264, 2916, 2862, 1775, 1589, 1489, 1358, 1173, 1065, 910, 856, 802, 633, 563, 494 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.19–7.11 (m, 2 H, HAr ), 6.62–6.55 (m, 2 H, HAr ), 4.05 (br s, 2 H, OH), 3.77 (t, J = 4.9 Hz, 2 H, O-CH2 ), 3.51 (t, J = 4.9 Hz, 2 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 146.42, 129.06 (2C), 121.74, 113.70 (2C), 60.54 (2C), 55.39 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 ClNO2 : 215.68; found: 215.
2,2′-(4-Bromophenylazanediyl)diethanol (4k)
2,2′-(4-Bromophenylazanediyl)diethanol (4k)
Yield: 0.0456 g (6%); off-white solid; mp 88–93 °C; Rf
= 0.29 (hexanes/EtOAc, 60:40).
IR (neat): 3271, 2947, 2862, 1759, 1582, 1489, 1358, 1242, 1173, 1103, 1057, 1011, 910, 849, 802, 640, 548, 548, 494 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.30–7.26 (m, 2 H, HAr ), 6.53 (d, J = 9.1 Hz, 2 H, HAr ), 4.00 (br s, 2 H, OH), 3.77 (t, J = 4.8 Hz, 2 H, O-CH2 ), 3.50 (t, J = 4.8 Hz, 2 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 146.80, 131.95 (2C), 114.16 (2C), 108.78, 60.49 (2C), 55.32 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 BrNO2 : 260.13; found: 260.
2,2′-(3-Fluorophenylazanediyl)diethanol (4l)
2,2′-(3-Fluorophenylazanediyl)diethanol (4l)
Yield: 0.1340 g (15%); dark-brown oil; Rf
= 0.25 (hexanes/EtOAc, 70:30).
IR (neat): 3256, 2955, 2878, 1759, 1612, 1497, 1358, 1242, 1157, 1057, 849, 756, 610, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.12 (dd, J = 15.5, 8.2 Hz, 1 H, HAr ), 6.39 (m, 2 H, HAr ), 6.32 (dt, J = 12.9, 2.3 Hz, 1 H, HAr ), 4.62 (br s, 2 H, OH), 3.75 (t, J = 4.9 Hz, 4 H, O-CH2 ), 3.48 (t, J = 4.9 Hz, 4 H, N-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 150.62 (d, J = 242.6 Hz), 149.55 (d, J = 10.5 Hz), 130.32 (d, J = 10.4 Hz), 107.94 (d, J = 2.0 Hz), 103.12 (d, J = 21.6 Hz), 99.34 (d, J = 26.2 Hz), 60.41 (2C), 55.35 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H14 FNO2 : 199.22; found: 199.
2,2′-(2,3-Dichlorophenylazanediyl)diethanol (4m)
2,2′-(2,3-Dichlorophenylazanediyl)diethanol (4m)
Yield: 0.0235 g (3%); yellow oil; Rf
= 0.30 (hexanes/EtOAc, 70:30).
IR (neat): 3302, 2932, 2870, 2708, 2029, 1921, 1759, 1574, 1450, 1242, 1042, 918, 718, 617, 532 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.29–7.26 (dd, J = 8.1, 1.7 Hz, 1 H, HAr ), 7.23 (dd, J = 8.1, 1.7 Hz, 1 H, HAr ), 7.18 (t, J = 7.9 Hz, 1 H, HAr ), 3.60 (t, J = 5.3 Hz, 4 H, O-CH2 ), 3.29 (t, J = 5.3 Hz, 4 H, N-CH2 ), 2.79 (br s, 2 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 149.01, 134.03, 131.11, 127.57, 126.93, 124.77, 59.98 (2C), 56.25 (2C).
GCMS (EI, 70 eV): m /z calcd for C10 H13 Cl2 NO2 : 250.12; found: 250.
2,2′-(2-Methyl-4-bromophenylazanediyl)diethanol (4n)
2,2′-(2-Methyl-4-bromophenylazanediyl)diethanol (4n)
Yield: 0.0889 g (12%); dark-brown oil; Rf
= 0.27 (hexanes/EtOAc, 60:40).
IR (neat): 3279, 2940, 2878, 1913, 1759, 1643, 1481, 1242, 1057, 818, 571 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.33 (d, J = 2.1 Hz, 1 H, HAr ), 7.27 (dd, J = 8.4, 2.1 Hz, 1 H, HAr ), 7.06 (d, J = 8.5 Hz, 1 H, HAr ), 3.56 (t, J = 5.3 Hz, 4 H O-CH2 ), 3.35 (br s, 2 H, OH), 3.11 (t, J = 5.3 Hz, 4 H, N-CH2 ), 2.30 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 148.60, 138.19, 133.99, 129.69, 125.91, 117.85, 59.83 (2C), 56.52 (2C), 18.12.
GCMS (EI, 70 eV): m /z calcd for C11 H16 BrNO2 : 274.15; found: 274.
2,2′-(2-Methyl-4-fluorophenylazanediyl)diethanol (4o)
2,2′-(2-Methyl-4-fluorophenylazanediyl)diethanol (4o)
Yield: 0.0588 g (7%); yellow solid; mp 54–60 °C; Rf
= 0.28 (hexanes/EtOAc, 60:40).
IR (neat): 3372, 3310, 2878, 1775, 1582, 1466, 1242, 1049, 787, 718, 633 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.11 (dd, J = 14.9, 7.9 Hz, 1 H, HAr ), 6.99 (d, J = 8.0 Hz, 1 H, HAr ), 6.82 (t, J = 8.7 Hz, 1 H, HAr ), 3.59 (t, J = 5.4 Hz, 4 H, O-CH2 ), 3.17 (br s, 2 H, OH), 3.17 (t, J = 5.4 Hz, 4 H, N-CH2 ), 2.25 (d, J = 2.4 Hz, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 162.10 (d, J = 242.5 Hz), 151.15 (d, J = 6.6 Hz), 126.68 (d, J = 10.2 Hz), 122.92 (d, J = 15.9 Hz), 119.38 (d, J = 2.9 Hz), 111.50 (d, J = 23.0 Hz), 60.01 (2C), 56.46 (2C), 9.90 (d, J = 5.2 Hz).
GCMS (EI, 70 eV): m /z calcd for C11 H16 FNO2 : 213.25; found: 213.
2-Phenoxyethanol (6a)
Yield: 0.7265 g (99%); colorless oil; Rf
= 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3341, 2924, 1759, 1597, 1489, 1242, 1049, 910, 756, 602, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.26–7.14 (m, 2 H, HAr ), 6.88 (t, J = 7.4 Hz, 1 H, HAr ), 6.82 (d, J = 7.9 Hz, 2 H, HAr ), 3.97 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.85 (t, J = 4.6 Hz, 2 H, O-CH2 ), 2.52 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 158.62, 129.52 (2C), 121.21, 114.59 (2C), 69.14, 61.41.
GC-MS (EI, 70 eV): m /z calcd for C8 H10 O2 : 138.16; found: 138.
2-(o -Tolyloxy)ethanol (6b)
2-(o -Tolyloxy)ethanol (6b)
Yield: 0.6758 g (96%); pale-yellow liquid; Rf
= 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3302, 2916, 2866, 2361, 1890, 1755, 1655, 1589, 1493, 1454, 1373, 1308, 1242, 1123, 1049, 918, 822, 748, 714, 606 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.14 (t, J = 7.2 Hz, 2 H, HAr ), 6.87 (td, J = 7.5, 0.7 Hz, 1 H, HAr ), 6.81 (d, J = 8.3 Hz, 1 H, HAr ), 4.05 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.95 (br t, J = 4.6 Hz, 2 H, O-CH2 ), 2.44 (br t, J = 5.2 Hz, 1 H, OH), 2.23 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 156.73, 130.85, 126.90, 126.85, 120.89, 111.3, 69.24, 61.62, 16.27.
GC-MS (EI, 70 eV): m /z calcd for C9 H12 O2 : 152.19; found: 152.
2-(m -Tolyloxy)ethanol (6c)
2-(m -Tolyloxy)ethanol (6c)
Yield: 0.6967 g (99%); colorless liquid; Rf
= 0.52 (hexanes/EtOAc 90:10).
IR (neat): 3351, 2916, 2870, 2361, 2338, 1674, 1585, 1489, 1450, 1377, 1261, 1157, 1049, 949, 899, 856, 772, 741, 691 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.08 (t, J = 7.8 Hz, 1 H, HAr ), 6.73–6.68 (m, 1 H, HAr ), 6.68–6.60 (m, 2 H, HAr ), 3.96 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.85 (br d, J = 3.9 Hz, 2 H, O-CH2 ), 2.46 (br s, 1 H, OH), 2.24 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 157.57, 138.54, 128.22, 120.90, 114.36, 110.39, 68.04, 60.38, 20.46.
GC-MS (EI, 70 eV): m /z calcd for C9 H12 O2 : 152.19; found: 152.
2-(p -Tolyloxy)ethanol (6d)
2-(p -Tolyloxy)ethanol (6d)
Yield: 0.6967 g (99%); colorless liquid; Rf
= 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3337, 2936, 2870, 2361, 2342, 1759, 1690, 1589, 1481, 1447, 1373, 1277, 1246, 1161, 1134, 1061, 1038, 918, 791, 745, 691, 602, 540, 509, 474 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.07 (t, J = 5.4 Hz, 2 H, HAr ), 6.84–6.77 (m, 2 H, HAr ), 4.03 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.92 (t, J = 4.5 Hz, 2 H, O-CH2 ), 2.53 (br s, 1 H, OH), 2.28 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 156.5, 130.39, 130.00 (2C), 114.47 (2C), 69.34, 61.48, 20.49.
GC-MS (EI, 70 eV): m /z calcd for C9 H12 O2 : 152.19; found: 152.
2-(2,4-Dimethylphenoxy)ethanol (6e)
2-(2,4-Dimethylphenoxy)ethanol (6e)
Yield: 0.6596 g (97%); white solid; mp 52–56 °C; Rf
= 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3256, 2940, 2916, 2862, 2361, 2330, 1759, 1609, 1504, 1450, 1377, 1354, 1300, 1250, 1223, 1161, 1134, 1084, 1053, 934, 907, 883, 799, 768, 710, 579, 544 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.98–6.90 (m, 2 H, HAr ), 6.71 (d, J = 8.1 Hz, 1 H, HAr ), 4.04 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.94 (br d, J = 4.0 Hz, 2 H, O-CH2 ), 2.25 (s, 3 H, CH3 ), 2.23 (br s, 1 H, OH), 2.20 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 154.61, 131.67, 130.15, 127.06, 126.64, 111.55, 69.59, 61.71, 20.47, 16.18.
GC-MS (EI, 70 eV): m /z calcd for C10 H14 O2 : 166.22; found: 166.
2-(2,5-Dimethylphenoxy)ethanol (6f)
2-(2,5-Dimethylphenoxy)ethanol (6f)
Yield: 0.6598 g (97%); yellow liquid; Rf
= 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3352, 2920, 2870, 2361, 1755, 1582, 1508, 1454, 1412, 1254, 1130, 1042, 949, 899, 802, 718, 667, 586 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.00 (d, J = 7.5 Hz, 1 H, HAr ), 6.68 (d, J = 7.5 Hz, 1 H, HAr ), 6.63 (s, 1 H, HAr ), 4.03 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.93 (br d, J = 4.2 Hz, 2 H, O-CH2 ), 2.56 (br s, 1 H, OH), 2.30 (s, 3 H, CH3 ), 2.18 (s, 3 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 156.62, 136.69, 130.57, 123.67, 121.44, 112.49, 69.37, 61.64, 21.41, 15.84.
GC-MS (EI, 70 eV): m /z calcd for C10 H14 O2 : 166.22; found: 166.
2-(4-Methoxyphenoxy)ethanol (6g)
2-(4-Methoxyphenoxy)ethanol (6g)
Yield: 0.6707 g (99%); off-white solid; mp 64–70 °C; Rf
= 0.45 (hexanes/EtOAc, 85:15).
IR (neat): 3291, 3013, 2928, 2870, 2361, 1751, 1504, 1439, 1377, 1292, 1227, 1088, 1030, 930, 891, 826, 725, 671, 571, 532, 501 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.87–6.80 (m, 4 H, HAr ), 4.02 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.92 (br dd, J = 8.8, 4.6 Hz, 2 H, O-CH2 ), 3.76 (s, 3 H, O-CH3 ), 2.48 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 154.09, 152.78, 115.60 (2C), 114.71 (2C), 69.96, 61.51, 55.73.
GC-MS (EI, 70 eV): m /z calcd for C9 H12 O3 : 168.19; found: 168.
2-(3-Nitrophenoxy)ethanol (6h)
2-(3-Nitrophenoxy)ethanol (6h)
Yield: 0.5465 g (83%); white solid; mp 87–91 °C; Rf
= 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3279, 3078, 2936, 2866, 2361, 1763, 1616, 1524, 1450, 1342, 1292, 1242, 1053, 953, 895, 864, 791, 733, 671, 613, 540, 486 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.83 (ddd, J = 8.2, 2.0, 0.7 Hz, 1 H, HAr ), 7.74 (t, J = 2.3 Hz, 1 H, HAr ), 7.44 (t, J = 8.2 Hz, 1 H, HAr ), 7.26 (ddd, J = 8.3, 2.5, 0.6 Hz, 1 H, HAr ), 4.17 (t, J = 4.5 Hz, 2 H, O-CH2 ), 4.03 (br d, J = 3.7 Hz, 2 H, O-CH2 ), 2.38 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 159.20, 149.13, 130.08, 121.62, 116.10, 108.91, 69.95, 61.10.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 NO4 : 183.16; found: 183.
2-(4-Nitrophenoxy)ethanol (6i)
2-(4-Nitrophenoxy)ethanol (6i)
Yield: 0.4409 g (67%); pale-yellow solid; mp 79–83 °C; Rf
= 0.27 (hexanes/EtOAc, 90:10).
IR (neat): 3252, 2947, 2361, 1759, 1593, 1501, 1331, 1261, 1173, 1072, 1038, 914, 837, 752, 687, 656, 521 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 8.23–8.17 (m, 2 H, HAr ), 7.01–6.97 (m, 2 H, HAr ), 4.21–4.17 (m, 2 H, O-CH2 ), 4.06–4.01 (m, 2 H, O-CH2 ), 2.31 (br s, 1 H).
13 C NMR (126 MHz, CDCl3 ): δ = 163.73, 141.71, 125.97 (2C), 114.54 (2C), 70.01, 61.06.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 NO4 : 183.16; found: 183.
2-(2-Chlorophenoxy)ethanol (6j)
2-(2-Chlorophenoxy)ethanol (6j)
Yield: 0.6178 g (92%); brown liquid; Rf
= 0.50 (hexanes/EtOAc, 85:15).
IR (neat): 3383, 2920, 2870, 2361, 2330, 1612, 1508, 1454, 1377, 1288, 1238, 1177, 1042, 914, 806, 737, 702, 667, 637, 559, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.35 (dd, J = 7.8, 1.6 Hz, 1 H, HAr ), 7.23–7.15 (m, 1 H, HAr ), 6.96–6.85 (m, 2 H, HAr ), 4.11 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.97 (t, J = 4.5 Hz, 2 H, O-CH2 ), 2.92 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 154.17, 130.32, 127.86, 123.02, 121.92, 113.97, 70.67, 61.18.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 ClO2 : 172.61; found: 172.
2-(3-Chlorophenoxy)ethanol (6k)
2-(3-Chlorophenoxy)ethanol (6k)
Yield: 0.6579 g (98%); colorless liquid; Rf
= 0.60 (hexanes/EtOAc, 85:15).
IR (neat): 3345, 3314, 2924, 2870, 2361, 2334, 1759, 1597, 1489, 1369, 1285, 1242, 1169, 1088, 1049, 914, 826, 741, 667, 563, 509 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.85 (dd, J = 8.1, 1.7 Hz, 1 H, HAr ), 7.59–7.51 (m, 1 H, HAr ), 7.11 (dd, J = 8.4, 0.8 Hz, 1 H, HAr ), 7.08–7.03 (m, 1 H, HAr ), 4.24 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.98 (dt, J = 9.3, 4.8 Hz, 2 H, O-CH2 ), 3.01 (t, J = 6.4 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 152.28, 139.82, 134.50, 125.79, 120.86, 115.14, 71.33, 60.86.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 ClO2 : 172.61; found: 172.
2-(4-Chlorophenoxy)ethanol (6l)
2-(4-Chlorophenoxy)ethanol (6l)
Yield: 0.6044 g (90%); dark-brown liquid; Rf
= 0.47 (hexanes/EtOAc, 85:15).
IR (neat): 3526, 3360, 2943, 2874, 2361, 2330, 1921, 1759, 1690, 1643, 1605, 1582, 1520, 1485, 1450, 1350, 1277, 1254, 1165, 1072, 1038, 914, 853, 775, 745, 698, 667, 602, 567, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.26–7.19 (m, 2 H, HAr ), 6.87–6.80 (m, 2 H, HAr ), 4.04 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.95 (dd, J = 9.4, 5.3 Hz, 2 H, O-CH2 ), 2.30 (t, J = 6.0 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 157.24, 129.42 (2C), 126.01, 115.84 (2C), 69.53, 61.34.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 ClO2 : 172.61; found: 172.
2-(2,4-Dichlorophenoxy)ethanol (6m)
2-(2,4-Dichlorophenoxy)ethanol (6m)
Yield: 0.4129 g (65%); yellow liquid; Rf
= 0.47 (hexanes/EtOAc, 85:15).
IR (neat): 3364, 2928, 2874, 2361, 1967, 1751, 1585, 1389, 1246, 1061, 868, 802, 733, 652, 571, 559 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.35 (d, J = 2.5 Hz, 1 H, HAr ), 7.16 (dd, J = 8.8, 2.6 Hz, 1 H, HAr ), 6.85 (d, J = 8.8 Hz, 1 H, HAr ), 4.09 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.98 (dd, J = 9.4, 5.1 Hz, 2 H, O-CH2 ), 2.81 (t, J = 6.1 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 153.02, 130.00, 127.71, 126.25, 123.70, 114.57, 71.00, 61.10.
GC-MS (EI, 70 eV): m /z calcd for C8 H8 Cl2 O2 : 207.05; found: 207.
2-(4-Fluorophenoxy)ethanol (6n)
2-(4-Fluorophenoxy)ethanol (6n)
Yield: 0.6683 g (96%); colorless liquid; Rf
= 0.50 (hexanes/EtOAc, 90:10).
IR (neat): 3375, 2932, 2874, 2361, 1759, 1504, 1454, 1373, 1296, 1204, 1042, 914, 826, 745, 648, 633, 563, 513 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.04–6.91 (m, 2 H, HAr ), 6.89–6.80 (m, 2 H, HAr ), 4.03 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.94 (br s, 2 H, O-CH2 ), 2.54 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 157.45 (d, J = 239.0 Hz), 154.75 (d, J = 2.1 Hz), 115.89 (d, J = 23.1 Hz) (2C), 115.59 (d, J = 8.0 Hz) (2C), 69.89, 61.37.
GC-MS (EI, 70 eV): m /z calcd for C8 H9 FO2 : 156.15; found: 156.
2-(3-(Trifluoromethyl)phenoxy)ethanol (6o)
2-(3-(Trifluoromethyl)phenoxy)ethanol (6o)
Yield: 0.4577 g (72%); colorless liquid; Rf
= 0.50 (hexanes/EtOAc, 85:15).
IR (neat): 3345, 3306, 2932, 2878, 2361, 1755, 1674, 1593, 1493, 1450, 1323, 1238, 1169, 1119, 1061, 937, 883, 787, 745, 698, 656, 610, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.38 (t, J = 8.0 Hz, 1 H, HAr ), 7.22 (d, J = 7.7 Hz, 1 H, HAr ), 7.14 (s, 1 H, HAr ), 7.08 (dd, J = 8.3, 2.3 Hz, 1 H, HAr ), 4.10 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.98 (br dd, J = 9.2, 4.9 Hz, 2 H, O-CH2 ), 2.55 (br t, J = 5.8 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 158.76, 131.89 (q, J = 32.4 Hz), 130.08, 123.92 (q, J = 408.2 Hz), 118.01 (d, J = 1.0 Hz), 117.80 (q, J = 3.9 Hz), 111.36 (q, J = 3.8 Hz), 69.52, 61.20.
GC-MS (EI, 70 eV): m /z calcd for C9 H9 F3 O2 : 206.16; found: 206.
2-(4-(2,4,4-Trimethylpentan-2-yl)phenoxy)ethanol (6p)
2-(4-(2,4,4-Trimethylpentan-2-yl)phenoxy)ethanol (6p)
Yield: 0.5948 g (98%); pale-yellow liquid; Rf
= 0.55 (hexanes/EtOAc, 90:10).
IR (neat): 3325, 2951, 2870, 2361, 2268, 2118, 2064, 2041, 1944, 1883, 1759, 1639, 1609, 1512, 1458, 1366, 1242, 1042, 918, 829, 683, 586, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.28–7.25 (m, 2 H, HAr ), 6.87–6.81 (m, 2 H, HAr ), 4.06 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.94 (br s, 2 H, O-CH2 ), 2.33 (br s, 1 H, OH), 1.70 (s, 2 H, CH2 ), 1.34 (s, 6 H, CH3 ), 0.71 (s, 9 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 156.23, 142.74, 127.16 (2C), 113.75 (2C), 69.12, 61.55, 56.99, 37.98, 32.35, 31.80 (3C), 31.71 (2C).
GC-MS (EI, 70 eV): m /z calcd for C16 H26 O2 : 250.38; found: 250.
Methyl 3-(2-Hydroxyethoxy)benzoate (6q)
Methyl 3-(2-Hydroxyethoxy)benzoate (6q)
Yield: 0.6123 g (95%); colorless liquid; Rf
= 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3483, 3406, 3352, 3337, 2943, 2866, 2361, 1717, 1585, 1443, 1277, 1045, 926, 895, 756, 683, 610, 555, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.66–7.64 (m, 1 H, HAr ), 7.57 (dd, J = 2.4, 1.6 Hz, 1 H, HAr ), 7.34 (t, J = 8.0 Hz, 1 H, HAr ), 7.12 (dd, J = 7.9, 3.0 Hz, 1 H, HAr ), 4.13 (t, J = 4.6 Hz, 2 H, O-CH2 ), 3.98 (br dd, J = 9.0, 4.8 Hz, 2 H, O-CH2 ), 3.91 (s, 3 H, O-CH3 ), 2.48 (br t, J = 5.7 Hz, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 166.94, 158.62, 131.46, 129.51, 122.39, 119.98, 114.72, 69.44, 61.30, 52.24.
GC-MS (EI, 70 eV): m /z calcd for C10 H12 O4 : 196.2; found: 196.
2-(2-Hydroxyethoxy)benzaldehyde (6r)
2-(2-Hydroxyethoxy)benzaldehyde (6r)
Yield: 0.4080 g (60%); yellow oil; Rf
= 0.30 (hexanes/EtOAc, 90:10).
IR (neat): 3379, 3364, 2932, 2870, 2361, 1759, 1678, 1597, 1454, 1396, 1242, 1161, 1045, 918, 833, 760, 656, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 10.43 (s, 1 H, CHO), 7.80 (dd, J = 7.7, 1.8 Hz, 1 H, HAr ), 7.60–7.50 (m, 1 H, HAr ), 7.05 (t, J = 7.5 Hz, 1 H, HAr ), 7.00 (d, J = 8.4 Hz, 1 H, HAr ), 4.20 (t, J = 4.6 Hz, 2 H, O-CH2 ), 4.03 (t, J = 4.5 Hz, 2 H, O-CH2 ), 3.13 (br s, 1 H, OH).
13 C NMR (126 MHz, CDCl3 ): δ = 190.24, 160.87, 136.08, 129.71, 125.00, 121.13, 112.94, 70.21, 61.07.
GC-MS (EI, 70 eV): m /z calcd for C9 H10 O3 : 166.17; found: 166.
2-(Quinolin-8-yloxy)ethanol (6s)
2-(Quinolin-8-yloxy)ethanol (6s)
Yield: 0.6256 g (96%); pale-brown solid; mp 112–116 °C; Rf
= 0.40 (hexanes/EtOAc, 40:60).
IR (neat): 3387, 2994, 2855, 1759, 1666, 1574, 1504, 1450, 1373, 1319, 1250, 1119, 1072, 903, 764, 733, 633, 571, 532 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 8.82 (dd, J = 4.2, 1.6 Hz, 1 H, HAr ), 8.13 (dd, J = 8.3, 1.5 Hz, 1 H, HAr ), 7.45 (t, J = 7.9 Hz, 1 H, HAr ), 7.41–7.37 (m, 2 H, HAr ), 7.07 (d, J = 7.5 Hz, 1 H, HAr ), 5.87 (br s, 1 H, OH), 4.26 (t, J = 4.4 Hz, 2 H, O-CH2 ), 4.11 (t, J = 4.4 Hz, 2 H, O-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 154.37, 148.67, 139.85, 136.54, 129.49, 127.02, 121.70, 119.89, 109.61, 70.96, 60.83.
GC-MS (EI, 70 eV): m /z calcd for C11 H11 NO2 : 189.21; found: 189.
5-(2-Chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c ]pyridine (3p)[55 ]
5-(2-Chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c ]pyridine (3p)[55 ]
Yield: 0.9013 g (95%); colorless oil; Rf
= 0.70 (hexanes/EtOAc, 85:15).
IR (neat): 3055, 2901, 2770, 2275, 2361, 2060, 1921, 1763, 1674, 1566, 1443, 1358, 1254, 1165, 1107, 1038, 903, 837, 752, 702, 590 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.45 (dd, J = 7.6, 1.6 Hz, 1 H, HAr ), 7.27 (dd, J = 7.8, 1.3 Hz, 1 H, HAr ), 7.16–7.08 (m, 2 H, HAr ), 6.97 (d, J = 5.1 Hz, 1 H, HAr ), 6.61 (d, J = 5.1 Hz, 1 H, HAr ), 3.73 (s, 2 H, N-CH2 ), 3.54 (s, 2 H, N-CH2 ), 2.80 (d, J = 5.0 Hz, 2 H, N-CH2 ), 2.78–2.74 (m, 2 H, CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 135.06, 133.16, 132.85, 132.35, 129.55, 128.38, 127.13, 125.66, 124.20, 121.56, 57.40, 52.06, 49.68, 24.48.
GCMS (EI, 70 eV): m /z calcd for C14 H14 ClNS: 263.79; found: 263.
(2S )-1-[2-[(3-Hydroxy-1-adamantyl)amino]acetyl]pyrrolidine-2-carbonitrile (3q)[56 ]
(2S )-1-[2-[(3-Hydroxy-1-adamantyl)amino]acetyl]pyrrolidine-2-carbonitrile (3q)[56 ]
Yield: 0.7075 g (78%); off-white solid; mp 112–116 °C; Rf
= 0.50 (EtOAc/MeOH, 90:10).
IR (neat): 3291, 2913, 2847, 2361, 2330, 1755, 1655, 1547, 1512, 1450, 1404, 1354, 1308, 1250, 1188, 1153, 1119, 1034, 964, 910, 826, 791, 671, 637, 602, 552, 513, 463 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 4.89–4.75 (m, 1 H, N-CH), 3.70–3.58 (m, 1 H, CH), 3.52–3.38 (m, 3 H, CH, CH2 ), 2.40–2.12 (m, 8 H, CH2 ), 1.68–1.49 (m, 12 H, CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 170.60, 170, 47, 118.33, 118.28, 69.45, 53.76, 53.46, 49.92, 49.84, 46.58, 46.53, 46.30, 45.48, 44.34, 44.30, 43.37, 41.26, 41.20, 41.11, 41.04, 35.11, 35.07, 32.28, 30.65, 30.64, 29.88, 25.05, 22.77
LCMS (ESI): m /z [M + H]+ calcd for [C17 H25 N3 O2 ]+ : 304.4; found: 304.
2-[2-(4-Benzo[b ][1,4]benzothiazepin-6-ylpiperazin-1-yl)ethoxy]ethanol (3r)[57 ]
2-[2-(4-Benzo[b ][1,4]benzothiazepin-6-ylpiperazin-1-yl)ethoxy]ethanol (3r)[57 ]
Yield: 0.5907 g (91%); pale-yellow viscous liquid; Rf
= 0.45 (hexanes/EtOAc, 30:70).
IR (neat): 2913, 2855, 2361, 2338, 1593, 1574, 1555, 1454, 1404, 1369, 1304, 1242, 1146, 1111, 1061, 1011, 949, 883, 833, 741, 691, 667, 617, 590, 505, 463 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 7.49 (d, J = 7.6 Hz, 1 H, HAr ), 7.38 (dd, J = 7.7, 1.3 Hz, 1 H, HAr ), 7.32–7.27 (m, 3 H, HAr ), 7.17–7.14 (m, 1 H, HAr ), 7.07 (dd, J = 8.0, 1.2 Hz, 1 H, HAr ), 6.87 (td, J = 7.6, 1.3 Hz, 1 H, HAr ), 3.70–3.57 (m, 10 H, N-CH2 ), 3.57 (br s, 1 H, OH), 2.58 (dt, J = 14.8, 6.5 Hz, 6 H, O-CH2 ).
13 C NMR (126 MHz, CDCl3 ): δ = 160.68, 148.87, 139.89, 134.06, 132.21, 132.18, 130.85, 129.13, 128.99, 128.33, 128.00, 125.32, 122.86, 72.46, 67.54, 61.84, 57.97, 53.10.
LC-MS (ESI): m /z [M + H]+ calcd for [C21 H25 N3 O2 S]+ : 384.51; found: 384.
Isobutyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6t)[54 ]
Isobutyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6t)[54 ]
Yield: 0.4854 g (83%); colorless liquid; Rf
= 0.77 (hexanes/EtOAc, 95:5).
IR (neat): 2955, 2870, 2361, 2330, 1759, 1724, 1612, 1582, 1508, 1470, 1416, 1389, 1312, 1261, 1192, 1130, 1045, 995, 941, 841, 802, 768, 714, 667, 586, 517 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr ), 6.65 (d, J = 7.5 Hz, 1 H, HAr ), 6.60 (s, 1 H, HAr ), 3.92–3.88 (m, 2 H, O-CH2 ), 3.85 (d, J = 6.5 Hz, 2 H, O-CH2 ), 2.30 (s, 3 H, CH3 ), 2.17 (s, 3 H, CH3 ), 1.93 (dp, J = 13.3, 6.7 Hz, 1 H, CH), 1.73 (s, 4 H, CH2 ), 1.22 (s, 6 H, CH3 ), 0.94 (d, J = 6.7 Hz, 6 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 177.83, 156.98, 136.46, 130.31, 123.61, 120.69, 111.93, 70.53, 67.97, 42.21, 37.20, 27.82, 25.24 (3C), 21.43, 19.15 (2C), 15.79.
GC-MS (EI, 70 eV): m /z calcd for C19 H30 O3 : 306.44; found: 306.
Methyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6u)[58 ]
Methyl 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoate (6u)[58 ]
Yield: 0.0531 g (9%); colorless liquid; Rf
= 0.68 (hexanes/EtOAc, 95:5).
IR (neat): 2947, 2866, 2361, 2334, 1732, 1612, 1585, 1508, 1474, 1389, 1312, 1261, 1196, 1153, 1130, 1045, 991, 941, 849, 802, 772, 714, 671, 586, 544, 505 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr ), 6.65 (d, J = 7.5 Hz, 1 H, HAr ), 6.60 (s, 1 H, HAr ), 3.90 (t, J = 5.5 Hz, 2 H, O-CH2 ), 3.66 (s, 3 H, O-CH3 ), 2.30 (s, 3 H, CH3 ), 2.17 (s, 3 H, CH3 ), 1.76–1.69 (m, 4 H, CH2 ), 1.22 (s, 6 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 178.30, 156.93, 136.42, 130.28, 123.55, 120.66, 111.89, 67.83, 51.71, 42.09, 37.11, 25.19, 25.18 (2C), 21.40, 15.75.
GC-MS (EI, 70 eV): m /z calcd for C16 H24 O3 : 264.36; found: 264.
5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic Acid (7)[54 ]
5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic Acid (7)[54 ]
Yield: 0.5463 g (90%); off-white solid; mp 62–65 °C; Rf
= 0.50 (EtOAc/ MeOH, 90:10).
IR (neat): 2959, 2916, 2870, 2361, 2342, 1759, 1705, 1612, 1582, 1512, 1474, 1400, 1327, 1269, 1211, 1157, 1126, 1045, 995, 937, 864, 802, 748, 586, 555 cm–1 .
1 H NMR (500 MHz, CDCl3 ): δ = 6.99 (d, J = 7.5 Hz, 1 H, HAr ), 6.65 (d, J = 7.5 Hz, 1 H, HAr ), 6.60 (s, 1 H, HAr ), 3.92 (t, J = 6.0 Hz, 2 H, O-CH2 ), 2.30 (s, 3 H, CH3 ), 2.17 (s, 3 H, CH3 ), 1.84–1.71 (m, 4 H, CH2 ), 1.25 (s, 6 H, CH3 ).
13 C NMR (126 MHz, CDCl3 ): δ = 184.97, 156.98, 136.48, 130.35, 123.64, 120.75, 111.98, 67.93, 42.03, 36.91, 25.18 (2C), 25.01, 21.45, 15.81.
LC-MS (ESI): m /z [M + H]+ calcd for [C15 H22 O3 ]+ : 251.33; found: 251.