Synthesis 2020; 52(03): 399-416
DOI: 10.1055/s-0039-1690727
paper
© Georg Thieme Verlag Stuttgart · New York

Stoichiometric and Catalytic (η 5-Cyclopentadienyl)cobalt-Mediated Cycloisomerizations of Ene-Yne-Ene Type Allyl Propargyl Ethers

Chu-An Chang
,
Stefan Gürtzgen
,
Erik P. Johnson
,
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, USA   Email: kpcv@berkeley.edu
› Author Affiliations
This work was funded by the NIH (GM 22479) and NSF (CHE 0907800)
Further Information

Publication History

Received: 05 September 2019

Accepted after revision: 07 October 2019

Publication Date:
28 October 2019 (online)


Abstract

The complexes CpCoL2 (Cp = C5H5; L = CO or CH2=CH2) mediate the cycloisomerizations of α,δ,ω-enynenes containing allylic ether linkages to 3-(oxacyclopentyl or cycloalkyl)furans via the intermediacy of isolable CpCo-η 4-dienes. A suggested mechanism comprises initial complexation of the triple bond and one of the double bonds, then oxidative coupling to a cobalt-2-cyclopentene, terminal double bond insertion to assemble a cobalta-4-cycloheptene, β-hydride elimination, and reductive elimination to furnish a CpCo-η 4-diene. When possible, the cascade continues through cobalt-mediated hydride shifts and dissociation of the aromatic furan ring. The outcome of a deuterium labeling experiment supports this hypothesis. The reaction exhibits variable stereoselectivity with a preference for the trans-product (or, when arrested, its syn-Me CpCo-η 4-diene precursor), but is completely regioselective in cases in which the two alkyne substituents are differentiated electronically by the presence or absence of an embedded oxygen. Regioselectivity is also attained by steric discrimination or blocking one of the two possible β-hydride elimination pathways. When furan formation is obviated by such regiocontrol, the sequence terminates in a stable CpCo-η 4-diene complex. The conversion of the cyclohexane-fused substrate methylidene-2-[5-(2-propenyloxy)-3-pentynyl]cyclohexane into mainly 1-[(1R*,3aS*,7aS*)-7a-methyloctahydroinden-1-yl]-1-ethanone demonstrates the potential utility of the method in complex synthesis.

Supporting Information

 
  • References


    • For pertinent reviews, see:
    • 1a Liu X, Li B, Liu Q. Synthesis 2019; 51: 1293
    • 1b Ai W, Zhong R, Liu X, Liu Q. Chem. Rev. 2019; 119: 2876
    • 1c Hirano M. ACS Catal. 2019; 9: 1408
    • 1d Pellissier H. Coord. Chem. Rev. 2018; 360: 122
    • 1e Hu Y, Bai M, Yang Y, Zhou Q. Org. Chem. Front. 2017; 4: 2256
    • 1f Chen W.-W, Xu M.-H. Org. Biomol. Chem. 2017; 15: 1029
    • 1g Roese P, Hilt G. Synthesis 2016; 48:  463
    • 1h Stathakis CI, Gkizis PL, Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
    • 1i Gandeepan P, Cheng C.-H. Acc. Chem. Res. 2015; 48: 1194
    • 1j Micalizio GC, Hale SB. Acc. Chem. Res. 2015; 48: 663
    • 1k Aissa C. Synlett 2014; 25: 2379
    • 1l Müller TJ. J. In Molecular Catalysts: Structure and Functional Design . Gade LH, Hofmann P. Wiley-VCH; Weinheim: 2014: 255
    • 1m Saito N, Tanaka D, Mori M, Sato Y. Chem. Rec. 2011; 11: 186
    • 1n Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 1o Watson ID. G, Toste FD. In Science of Synthesis, Stereoselective Synthesis, Vol. 3. Evans PA. Thieme; Stuttgart: 2011: 243
    • 1p Gandon V, Thorimbert S, Malacria M. In Science of Synthesis, 1,3-Dienes, Vol. 46. Rawal VH, Kozmin SA. Thieme; Stuttgart: 2009: 173
    • 1q Kulkarni AA, Daugulis O. Synthesis 2009; 4087
    • 1r Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2008; 14: 10876
    • 1s Michelet V, Toullec PY, Genét J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
    • 1t Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 1u Echavarren AM, Nevado C, Nieto-Oberhuber C, Muñoz MP, López S. In NATO Science Series, II: Mathematics, Physics and Chemistry, New Methodologies and Techniques for a Sustainable Organic Chemistry, Vol. 246. Mordini A, Faigl F. Springer; Dordrecht: 2008. 246 99
    • 1v Bruneau C. In Metathesis Chemistry: From Nanostructure Design to Synthesis of Advanced Materials. İmamoğlu Y, Dragutan V. Springer; Dordrecht: 2007: 375
    • 1w Bruneau C. Angew. Chem. Int. Ed. 2005; 44: 2328
    • 1x Yamamoto Y, Itoh K. In Ruthenium in Organic Synthesis . Murahashi SI. Wiley-VCH; Weinheim: 2004: 95
    • 1y Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
  • 2 For a recent topical review, see: Domínguez G, Pérez-Castells J. Chem. Eur. J. 2016; 22: 6720
  • 3 Himes RA, Fanwick PE, Rothwell IP. Chem. Commun. 2003; 18
  • 4 Shibata T, Tahara Y, Tamura K, Endo K. J. Am. Chem. Soc. 2008; 130: 3451
  • 5 Sagae H, Noguchi K, Hirano M, Tanaka K. Chem. Commun. 2008; 3804
  • 6 Interestingly, the same catalyst causes the analogous intermolecular reaction of enynes with ethene to generate only β-hydride elimination products.
    • 7a Saito N, Ichimaru T, Sato Y. Chem. Asian J. 2012; 7: 1521
    • 7b Interestingly, the analogous intermolecular reaction of enallenes with alkenes in the presence of a Ni catalyst results in only β-hydride elimination products: Noucti NN, Alexanian EJ. Angew. Chem. Int. Ed. 2013; 52: 8424
  • 8 Perekalin DS, Shvydkiy NV, Nelyubina YV, Kudinov AR. Chem. Eur. J. 2015; 21: 16344
  • 9 Suleymanov AA, Vasilyev DV, Novikov VV, Nelyubina YV, Perekalin DS. Beilstein J. Org. Chem. 2017; 13: 639
  • 10 Oonishi Y, Hato Y, Sato Y. Adv. Synth. Catal. 2016; 358: 2273
  • 11 For the precedent-setting cycloisomerization of 1,n-enynes in the presence of stoichiometric CpCo(CO)2 to give CpCo(1,3-diene) complexes, see: Buisine O, Aubert C, Malacria M. Chem. Eur. J. 2001; 7: 3517 ; and references cited therein
  • 12 See SI in: Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem. Eur. J. 2009; 15: 10244
  • 13 Sashuk V, Grela K. J. Mol. Catal. A: Chem. 2006; 257: 59
  • 14 Wiggins LF, Wood DJ. C. J. Chem. Soc. 1949; 2371
  • 15 Marco-Contelles J. Synth. Commun. 1997; 27: 3163
    • 16a Yamazaki H, Hagihara N. Bull. Chem. Soc. Jpn. 1971; 44: 2260
    • 16b See also: Wakatsuki Y, Aoki K, Yamazaki H. J. Am. Chem. Soc. 1979; 101: 1123
    • 17a Cammack JK, Jalisatgi S, Matzger AJ, Negrón A, Vollhardt KP. C. J. Org. Chem. 1996; 61: 4798
    • 17b King JA, Vollhardt KP. C. J. Organomet. Chem. 1993; 460: 91
  • 18 Fritch JR, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1980; 19: 559

    • See, for example:
    • 19a Tamao K, Kobayashi K, Ito Y. J. Am. Chem. Soc. 1988; 110: 1286
    • 19b Grigg R, Scott R, Stevenson P. Tetrahedron Lett. 1982; 23: 2691

      J H3, 4cis J H3 , 4trans in substituted tetrahydrofurans:
    • 20a Wu A, Cremer D. Int. J. Mol. Sci. 2003; 4: 158
    • 20b Dana G, Touboul E, Convert O, Pascal YL. Tetrahedron 1988; 44:  429
    • 20c Lambert JB, Papay JJ, Khan SA, Kappauf KA, Magyar ES. J. Am. Chem. Soc. 1974; 96: 611 
  • 21 Inspired by: Bednarski M, Danishefsky S. J. Am. Chem. Soc. 1986; 108: 7060
  • 22 Meyers AI, Mihelich ED, Kamata K. J. Chem. Soc., Chem. Commun. 1974; 768
  • 23 Hine J, Hahn S. J. Org. Chem. 1982; 47: 1738
  • 24 Wolinsky LE, Faulkner DJ, Finer J, Clardy J. J. Org. Chem. 1976; 41: 697
  • 25 CCDC 1948834 (38) contains the supplementary crystallographic data for this paper. They can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 26a Transition-metal-catalyzed cycloisomerizations of allyl propargyl ethers typically stop at the 3,4-dimethylidenetetrahydrofuran stage, see refs 9 and 10, and a review, ref. 1p.
    • 26b For an exception that features furan formation, see: Kawai H, Oi S, Inoue Y. Heterocycles 2006; 67: 101
    • 27a Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Sausalito: 2009

    • For selected DFT treatments of (possibly) relevant analogous steps, see:
    • 27b Yang T, Ehara M. J. Org. Chem. 2017; 82: 2150
    • 27c Kiyota S, In S, Komine N, Hirano M. Chem. Lett. 2017; 46: 1040
    • 27d Mekareeya A, Walker PR, Couce-Rios A, Campbell CD, Steven A, Paton RS, Anderson EA. J. Am. Chem. Soc. 2017; 139: 10104
    • 27e Hirano M, Ueda T, Komine N, Komiya S, Nakamura S, Deguchi H, Kawauchi S. J. Organomet. Chem. 2015; 797: 174
    • 27f Liu T, Han L, Han S, Bi S. Organometallics 2015; 34: 280
    • 27g Dachs A, Pla-Quintana A, Parella T, Solà M, Roglans A. Chem. Eur. J. 2011; 17: 14493
    • 27h Lebœuf D, Iannazzo L, Geny A, Malacria M, Vollhardt KP. C, Aubert C, Gandon V. Chem. Eur. J. 2010; 16: 8904
    • 27i Montero-Campillo MM, Rodríguez-Otero J, Cabaleiro-Lago E. J. Phys. Chem. A 2008;  112:  2423
    • 27j Aubert C, Gandon V, Geny A, Heckrodt TJ, Malacria M, Paredes E, Vollhardt KP. C. Chem. Eur. J. 2007; 13: 7466
    • 27k Geny A, Lebœuf D, Rouquié G, Vollhardt KP. C, Malacria M, Gandon V, Aubert C. Chem. Eur. J. 2007; 13: 5408
    • 27l Gandon V, Agenet N, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2006; 128: 8509
  • 28 Baldridge KK, O’Connor JM, Chen M.-C, Siegel JS. J. Phys. Chem. A 1999; 103: 10126
    • 29a Li L, Zhu X.-Q, Zhang Y.-Q, Bu H.-Z, Yuan P, Chen J, Su J, Deng X, Ye L.-W. Chem. Sci. 2019; 10: 3123
    • 29b Kwart H, Miles WH, Horgan AG, Kwart LD. J. Am. Chem. Soc. 1981;  103:  1757

      For some pertinent examples, see:
    • 30a Aubert C, Gandon V, Han S, Johnson BM, Malacria M, Schömenauer S, Vollhardt KP. C, Whitener GD. Synthesis 2010; 2179
    • 30b Amslinger S, Aubert C, Gandon V, Malacria M, Paredes E, Vollhardt KP. C. Synlett 2008; 2056 ; and references cited therein
    • 30c Duñach E, Halterman RL, Vollhardt KP. C. J. Am. Chem. Soc. 1985; 107: 1664
    • 30d Malacria M, Vollhardt KP. C. J. Org. Chem. 1984; 49: 5010
    • 30e Sternberg ED, Vollhardt KP. C. J. Org. Chem. 1984; 49: 1574
    • 30f Sternberg ED, Vollhardt KP. C. J. Org. Chem. 1984; 49: 1564
    • 30g Gadek TR, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1981; 20: 802
  • 31 For a related scenario see: Yamamoto Y, Kuwabara S, Ando Y, Nagata H, Nishiyama H, Itoh K. J. Org. Chem. 2004; 69: 6697

    • For selected pertinent discussions of steric and electronic effects on β-hydride eliminations, see:
    • 32a Chen Z.-M, Liu J, Guo J.-Y, Loch M, DeLuca RJ, Sigman MS. Chem. Sci. 2019; 10: 7246 ; and references cited therein
    • 32b Giri R, Shekhar KC. J. Org. Chem. 2018; 83: 3013
    • 32c Hong X, Liu P, Houk KN. C. J. Am. Chem. Soc. 2013; 135: 1456
    • 32d Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 32e Lu X. Top. Catal. 2005; 35: 73
    • 32f Trost BM, Romero DL, Rise F. J. Am. Chem. Soc. 1994; 116: 4268
    • 32g Trost BM, Tanoury GJ, Lautens M, Chan C, MacPherson DT. J. Am. Chem. Soc. 1994; 116: 4255
    • 32h Trost BM, Lautens M, Chan C, Jebaratnam DJ, Mueller T. J. Am. Chem. Soc. 1991; 113: 636
    • 32i Trost BM, Lee DC, Rise F. Tetrahedron Lett. 1989; 30: 651
    • 32j Doherty NM, Bercaw JE. J. Am. Chem. Soc. 1985; 107: 2670
    • 33a Ventre S, Simon C, Rekhroukh F, Malacria M, Amatore M, Aubert C, Petit M. Chem. Eur. J. 2013; 19: 5830
    • 33b Grigg R, Scott R, Stevenson P. J. Chem. Soc., Perkin Trans. 1 1988; 1365
  • 34 Inubushi Y, Kikuchi T, Ibuka T, Tanaka K, Saji I, Tokane K. Chem. Pharm. Bull. 1974; 22: 349
  • 35 Bednarski M, Danishefsky S. J. Am. Chem. Soc. 1986; 108: 7060

    • These acids are described in the literature, but without NMR spectral data:
    • 36a Los M. US Patent 3331856, 1967
    • 36b Raymahasay S, Sengupta SK, Bhattacharyya BK. J. Indian Chem. Soc. 1959; 36: 765
  • 37 Rubottom GM, Kim C.-W. J. Org. Chem. 1983; 48: 1550
    • 38a Lansbury PT, Demmin TR, DuBois GE, Haddon VR. J. Am. Chem. Soc. 1975; 97: 394
    • 38b Lansbury PT, Briggs PC, Demmin TR, DuBois GE. J. Am. Chem. Soc. 1971; 93: 1311
    • 38c Zeeh B, Jones G, Djerassi C. Chem. Ber. 1968; 101: 1018
  • 39 Black HK, Weedon BC. L. J. Chem. Soc. 1953; 1785
  • 40 Modified from: Barbot F, Dauphin B, Miginiac P. Synthesis 1985;  768
  • 41 Padwa A, Meske M, Murphree SS, Watterson SH, Ni Z. J. Am. Chem. Soc. 1995; 117: 7071
  • 42 Kitamura T, Sato Y, Mori M. Adv. Synth. Catal. 2002; 344: 678
  • 43 Grdina MB, Orfanopoulos M, Stephenson LM. J. Org. Chem. 1979; 44: 2936
    • 44a Ikeda T, Yue S, Hutchinson CR. J. Org. Chem. 1985; 50: 5193
    • 44b In addition to the preparation of 2-(2-methylidene­cyclohexyl)ethanol, this paper describes its conversion into the bromide (characterized only by 1H NMR) via the corresponding unisolated methanesulfonate.