Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(02): 281-289
DOI: 10.1055/s-0039-1690731
DOI: 10.1055/s-0039-1690731
paper
Efficient Synthesis of Diarylmethylamines via Lewis Acid Catalyzed Friedel–Crafts Reactions of Donor–Acceptor Aziridines with N,N-Dialkylanilines
This research was supported by the Nanomaterial Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2012M3A7B4049645) and the Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2016R1D1A1A09916621), and by Kyonggi University's Graduate Research Assistant Fellowship 2019.Further Information
Publication History
Received: 02 August 2019
Accepted after revision: 08 October 2019
Publication Date:
29 October 2019 (online)

Abstract
A method for efficient and mild synthesis of diarylmethylamine scaffold, via Lewis acid catalyzed Friedel–Crafts reaction of donor–acceptor aziridines with N,N-dialkylanilines to afford a biologically important diarylmethylamine derivatives in high yields (up to 88%), is presented. This reaction is suitable for the synthesis of various diarylmethylamine derivatives and has a broad scope for electron-rich arenes, including dimethoxybenzene.
Key words
diarylmethylamine - Friedel–Crafts reaction - donor–acceptor aziridine - N,N-dialkylaniline - Lewis acidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690731.
- Supporting Information
-
References
- 1a Mouridsen H, Gershanovich M, Sun Y, Pérez-Carriòn R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A. J. Clin. Oncol. 2003; 21: 2101
- 1b Rogawski MA, Löscher W. Nat. Rev. Neurosci. 2004; 5: 553
- 1c Curran MP, Scott LJ, Perry CM. Drugs 2004; 64: 523
- 1d Ayala GX, Tapia R. Eur. J. Neurosci. 2005; 22: 3067
- 1e Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 2a Dastbaravardeh N, Schnürch M, Mihovilovic MD. Org. Lett. 2012; 14: 1930
- 2b Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
- 2c Kumar NY. P, Jeyachandran R, Ackermann L. J. Org. Chem. 2013; 78: 4145
- 2d Beisel T, Manolikakes G. Org. Lett. 2013; 15: 6046
- 2e Barham JP, John MP, Murphy JA. Beilstein J. Org. Chem. 2014; 10: 2981
- 2f Sakai N, Hori H, Yoshida Y, Konakahara T, Ogiwara Y. Tetrahedron 2015; 71: 4722
- 2g Fernández-Salas JA, Marelli E, Nolan SP. Chem. Sci. 2015; 6: 4973
- 2h Hussain N, Kim B.-S, Walsh PJ. Chem. Eur. J. 2015; 21: 11010
- 2i Li M, Yucel B, Jiménez J, Rotella M, Fu Y, Walsh PJ. Adv. Synth. Catal. 2016; 358: 1910
- 2j Ando Y, Kamatsuka T, Shinokubo H, Miyake Y. Chem. Commun. 2017; 53: 9136
- 2k Chen M, Han Y, Ma D, Wang Y, Lai Z, Sun J. Chin. J. Chem. 2018; 36: 587
- 2l Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
- 2m Kramer S. Org. Lett. 2019; 21: 65
- 3a Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J. Am. Chem. Soc. 2004; 126: 13584
- 3b Duan H.-F, Jia Y.-X, Wang L-X, Zhou Q.-L. Org. Lett. 2006; 8: 2567
- 3c Jagt RB. C, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew. Chem. Int. Ed. 2006; 45: 2789
- 3d Wang Z.-Q, Feng C.-G, Xu M.-H, Lin G.-Q. J. Am. Chem. Soc. 2007; 129: 5336
- 3e Shao C, Yu H.-J, Wu N.-Y, Feng C.-G, Lin G.-Q. Org. Lett. 2010; 12: 3820
- 3f Sieber JD, Chennamadhavuni D, Fandrick KR, Qu B, Han ZS, Savoie J, Ma S, Samankumara LP, Grinberg N, Lee H, Song JJ, Senanayake CH. Org. Lett. 2014; 16: 5494
- 3g Chen C.-C, Gopula B, Syu J.-F, Pan J.-H, Kuo T.-S, Wu P.-Y, Henschke JP, Wu H.-L. J. Org. Chem. 2014; 79: 8077
- 3h Yasukawa T, Kuremoto T, Miyamura H, Kobayashi S. Org. Lett. 2016; 18: 2716
- 4a Pineschi M, Bertolini F, Crotti P, Macchia F. Org. Lett. 2006; 8: 2627
- 4b Wang Z, Sun X, Wu J. Tetrahedron 2008; 64: 5013
- 4c Huang CY, Doyle AG. J. Am. Chem. Soc. 2013; 135: 13605
- 4d Duda ML, Michael FE. J. Am. Chem. Soc. 2013; 135: 18347
- 4e Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S. J. Am. Chem. Soc. 2014; 136: 8544
- 5a Yadav JS, Reddy BV. S, Rao RS, Veerendhar G, Nagaiah K. Tetrahedron Lett. 2001; 42: 8067
- 5b Sun X, Sun W, Fan R, Wu J. Adv. Synth. Catal. 2007; 349: 2151
- 5c Bera M, Roy S. Tetrahedron Lett. 2007; 48: 7144
- 5d Wang Z, Sun X, Wu J. Tetrahedron 2008; 64: 5013
- 5e Bera M, Roy S. J. Org. Chem. 2010; 75: 4402
- 5f Ghorai MK, Tiwari DP, Jain N. J. Org. Chem. 2013; 78: 7121
- 6a Kim A, Kim S.-G. Eur. J. Org. Chem. 2015; 6419
- 6b Sin S, Kim S.-G. Adv. Synth. Catal. 2016; 358: 2701
- 6c Lee SG, Sin S, Kim S, Kim S.-G. Tetrahedron Lett. 2018; 59: 1480
- 6d Lee SG, Kim S.-G. Tetrahedron 2018; 74: 3671
- 6e Lee SG, Kim S.-G. Tetrahedron 2019; 75: 324
- 6f Kim S, Kim S.-G. Asian J. Org. Chem. 2019; 8
- 7a Jiang Z, Wang J, Lu P, Wang Y. Tetrahedron 2011; 67: 9609
- 7b Li L, Zhang J. Org. Lett. 2011; 13: 5940
- 7c Li L, Wu X, Zhang J. Chem. Commun. 2011; 47: 5049
- 7d Wu X, Li L, Zhang J. Chem. Commun. 2011; 47: 7824
- 7e Ghosh A, Pandey AK, Banerjee P. J. Org. Chem. 2015; 80: 7235
- 7f Wang B, Liang M, Tang J, Deng Y, Zhao J, Sun H, Tung C.-H, Jia J, Xu Z. Org. Lett. 2016; 18: 4614
- 7g Liao Y, Liu X, Zhang Y, Xu Y, Xia Y, Lin L, Feng X. Chem. Sci. 2016; 7: 3775
- 7h Wu X, Zhou W, Wu H.-H, Zhang J. Chem. Commun. 2017; 53: 5661
- 7i Liao Y, Zhou B, Xia Y, Liu X, Lin L, Feng X. ACS Catal. 2017; 7: 3934
- 8a Liu H, Zheng C, You S.-L. J. Org. Chem. 2014; 79: 1047
- 8b Xu Y, Chang F, Cao W, Liu X, Feng X. ACS Catal. 2018; 8: 10261
- 9 Wu X, Li L, Zhang J. Adv. Synth. Catal. 2012; 354: 3485
For recent examples on the synthesis of diarylmethylamines, see:
For recent examples on the synthesis of diarylmethylamines through arylation of aldimines, see:
For examples of ring-opening of 2-arylaziridines with aryl nucleophiles, see:
For examples of Friedel–Crafts reaction of 2-arylaziridines with electron-rich arenes, see:
For selective recent examples on cycloadditions of D–A aziridines, see:
For recent examples on alkylation of indoles with D–A aziridines, see: