Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(06): 893-900
DOI: 10.1055/s-0039-1690765
DOI: 10.1055/s-0039-1690765
paper
Palladium-Catalyzed/Copper-Mediated Desulfurization and Arylation of Quinoline-2-(1H)-thione for Rapid Access to Quinoline Derivatives
We are thankful for the financial support from the National Nature Science Foundation of China (No. 21562036), and the Key Talent Projects in Gansu Province (2018A-004).Further Information
Publication History
Received: 21 September 2019
Accepted after revision: 26 November 2019
Publication Date:
09 December 2019 (online)

Abstract
An efficient method for carbon–carbon bond formation is described. The process employs the palladium-catalyzed and copper-mediated cross-coupling of quinoline-2-(1H)-thiones with arylboronic acids or alkynes through C–S bond cleavage without an inert atmosphere. The method provides rapid and general access to a diverse range of 2-substituted quinolines in a single step from a wide range of quinoline-2-(1H)-thiones and arylboronic acids or alkynes.
Keywords
C–S bond cleavage - arylboronic acids - alkynes - quinoline-2-thiones - Liebeskind–Srogl cross couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690765.
- Supporting Information
-
References
- 1a Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Med. Res. Rev. 2018; 38: 775
- 1b Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. J. Nat. Prod. 2005; 68: 1717
- 2 Tabassum S, Kumara TH. S, Jasinski JP, Millikan SP, Yathirajan HS, Ganapathy PS. S, Sowmya HB. V, More SS, Nagendrappa G, Kaur M, Jose G. J. Mol. Struct. 2014; 1070: 10
- 3 Kumar S, Kaushik D, Bawa S, Khan SA. Chem. Biol. Drug Des. 2012; 79: 104
- 4 El-Feky SA, Thabet HK, Ubeid MT. J. Fluorine Chem. 2014; 161: 87
- 5 Scott DA, Dakin LA, Daly K, Del Valle DJ, Diebold RB, Drew L, Ezhuthachan J, Gero TW, Ogoe CA, Omer CA, Redmond SP, Repik G, Thakur K, Ye Q, Zheng X. Bioorg. Med. Chem. Lett. 2013; 23: 4591
- 6a Li SM, Huang J, Chen GJ, Han FS. Chem. Commun. 2011; 47: 12840
- 6b Gothard CM, Soh S, Gothard NA, Kowalczyk B, Wei Y, Baytekin B, Grzybowski BA. Angew. Chem. Int. Ed. 2012; 51: 7922
- 6c Mitamura T, Ogawa A. J. Org. Chem. 2011; 76: 1163
- 6d Yaragorla S, Pareek A, Dada R, Saini PL. Eur. J. Org. Chem. 2017; 4600
- 6e Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
- 6f Ghorai J, Reddy AC. S, Anbarasan P. Chem. Asian J. 2018; 13: 2499
- 6g Zhang X, Xu X, Yu L, Zhao Q. Tetrahedron Lett. 2014; 55: 2280
- 6h Yamaguchi K, Noda T, Tomizawa T, Kanai E, Hioki H. Eur. J. Org. Chem. 2015; 4990
- 6i Xu X, Liu W, Wang Z, Feng Y, Yan Y, Zhang X. Tetrahedron Lett. 2016; 57: 226
- 6j Chen L.-C, Wang H.-M, Hou R.-S, Du H.-D, Kang I.-J. Heterocycles 2011; 83: 331
- 6k Tanwar B, Kumar D, Kumar A, Ansari MI, Qadri MM, Vaja MD, Singh M, Chakraborti AK. New J. Chem. 2015; 39: 9824
- 6l Park J, Park JS, Park YG, Lee JY, Kang JW, Liu J, Dai L, Jin S.-H. Org. Electron. 2013; 14: 2114
- 6m Das S, Maiti D, De Sarkar S. J. Org. Chem. 2018; 83: 2309
- 6n Jiang K.-M, Kang J.-A, Jin Y, Lin J. Org. Chem. Front. 2018; 5: 434
- 6o Sapkota K, Han SS. New J. Chem. 2017; 41: 5395
- 6p Ryabukhin SV, Naumchik VS, Plaskon AS, Grygorenko OO, Tolmachev AA. J. Org. Chem. 2011; 76: 5774
- 6q Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
- 6r Xiao F, Chen Y, Liu Y, Wang J. Tetrahedron 2008; 64: 2755
- 6s Wang Z, Zhang X, Liu W, Sun R, Xu X, Yan Y. Synlett 2016; 27: 1563
- 6t Cho H, Török F, Török B. Green Chem. 2014; 16: 3623
- 7a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 7b Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 7c Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
- 8a Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
- 8b Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
- 8c Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
- 9 Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem. Commun. 2016; 52: 12076
- 10a Zapf A. Angew. Chem. Int. Ed. 2003; 42: 5394
- 10b Kang FA, Sui Z, Murray WV. J. Am. Chem. Soc. 2008; 130: 11300
- 10c Liu C, Qin ZX, Ji CL, Hong X, Szostak M. Chem. Sci. 2019; 10: 5736
- 11a Maltsev OV, Rausch R, Quan Z.-J, Hintermann L. Eur. J. Org. Chem. 2014; 7426
- 11b Kim H, Phan NH. T, Shin H, Lee H.-S, Sohn J.-H. Tetrahedron 2017; 73: 6604
- 11c Ma Y, Cammarata J, Cornella J. J. Am. Chem. Soc. 2019; 141: 1918
- 11d Zapf A. Angew. Chem. 2003; 115: 5552
- 12 Li BJ, Yu DG, Sun CL, Shi ZJ. Chem. Eur. J. 2011; 17: 1728
- 13 Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
- 14 Lengar A, Kappe CO. Org. Lett. 2004; 6: 771
- 15a Cheng H.-G, Chen H, Liu Y, Zhou Q. Asian J. Org. Chem. 2018; 7: 490
- 15b Mehta VP, Sharma A, Eycken EV. B. Org. Lett. 2008; 10: 1147
- 15c Maltsev OV, Pöthig A, Hintermann L. Org. Lett. 2014; 16: 1282
- 16 Wang TL, Liu XJ, Huo CD, Wang XC, Quan ZJ. Chem. Commun. 2018; 54: 499
- 17a Quan Z.-J, Hu W.-H, Jia X.-D, Zhang Z, Da Y.-X, Wang X.-C. Adv. Synth. Catal. 2012; 354: 2939
- 17b Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
- 17c Yan ZF, Quan ZJ, Da Y X, Zhang Z, Wang XC. Chem. Commun. 2014; 50: 13555
- 17d Du B.-X, Quan Z.-J, Da Y.-X, Zhang Z, Wang X.-C. Adv. Synth. Catal. 2015; 357: 1270
- 17e Yang Q, Quan Z, Du B, Wu S, Li P, Sun Y, Lei Z, Wang X. Catal. Sci. Technol. 2015; 5: 4522
- 17f Wang X.-C, Quan Z.-J, Liu M.-X, Gong H.-P. Synlett 2017; 29: 330
- 18a Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2001; 3: 91
- 18b Liebeskind LS, Srogl J. Org. Lett. 2002; 4: 979
- 18c Kusturin CL, Liebeskind LS. Org. Lett. 2002; 4: 983
- 18d Lengar A, Kappe CO. Org. Lett. 2004; 6: 771
- 18e Villalobos JM, Srogl J, Liebeskind LS. J. Am. Chem. Soc. 2007; 129: 15734
- 18f Prokopcová H, Kappe CO. J. Org. Chem. 2007; 72: 4440