Synthesis 2020; 52(08): 1147-1180 DOI: 10.1055/s-0039-1690817
© Georg Thieme Verlag Stuttgart · New York
Internal Chelation within Functionalized Organoindium Reagents: Prospects for Regio- and Stereocontrol in the Allylation, Propargylation and Allenylation of Carbonyl Compounds
Bartosz K. Zambroń∗
This work was supported by Narodowe Centrum Nauki (National Science Centre) (Grant No. SONATA UMO-2015/19/D/ST5/00713).
Abstract
The low basicity, selective nucleophilicity, and mildness of organoindium compounds allow for the incorporation of many important yet sensitive functional groups into their structure, including examples capable of intramolecularly chelating the indium center within these reagents. The specific nature of such chelated organoindiums causes the reactions involving them to proceed in a unique manner, often with regio- and stereoselectivity inaccessible with simple organometallic reagents. This review covers the rare examples of regio- and stereoselective allylation, propargylation, and allenylation of carbonyl compounds with chelated organoindiums, including brief descriptions of the applications of the resulting adducts in the asymmetric synthesis of natural products and synthetic targets of biological and medicinal interest.
1 Introduction
2 Internal Chelation Control in the Allylation Processes
2.1 Allylindiums with a Chelating Center at the γ-Position
2.2 Allylindiums with a chelating Center at the δ-Position
2.3 Allylindiums with a Chelating Center at ε- and ζ-Positions
2.4 Allylindiums with a Chelating Center at γ′- and δ′-Positions
3 Internal Chelation Control in Propargylation and Allenylation Processes
3.1 Additions of Chelated Allenylindiums
3.2 Additions of Chelated Propargylindiums
4 Conclusion
Key words
organoindiums -
internal chelation -
stereoselective allylation -
propargylation -
allenylation
References
1
Araki S,
Ito H,
Butsugan Y.
J. Org. Chem. 1988; 53: 1831
2
Li CJ,
Chan TH.
Tetrahedron Lett. 1991; 32: 7017
For selected reviews, see:
3a
Marshall JA.
Chem. Rev. 2000; 100: 3163
3b
Podlech J,
Maier TC.
Synthesis 2003; 633
3c
Zanoni G,
Pontiroli A,
Marchetti A,
Vidari G.
Eur. J. Org. Chem. 2007; 3599
3d
Kargbo RB,
Cook GR.
Curr. Org. Chem. 2007; 11: 1287
3e
Roy UK,
Roy S.
Chem. Rev. 2010; 110: 2472
3f
Kim SH,
Lee HS,
Kim KH,
Kim SH,
Kim JN.
Tetrahedron 2010; 66: 7065
3g
Singh A.
Synlett 2013; 24: 1457
3h
Shen Z.-L,
Wang S.-Y,
Chok Y.-K,
Xu Y.-H,
Loh T.-P.
Chem. Rev. 2013; 113: 271
3i
Kumar D,
Vemula SR,
Balasubramanian N,
Cook GR.
Acc. Chem. Res. 2016; 49: 2169
4
Marshall JA,
Grant CM.
J. Org. Chem. 1999; 64: 696
5a
Araki S,
Kamei T,
Hirashita T,
Yamamura H,
Kawai M.
Org. Lett. 2000; 2: 847
5b
Araki S,
Kameda K,
Tanaka J,
Hirashita T,
Yamamura H,
Kawai M.
J. Org. Chem. 2001; 66: 7919
5c
Araki S,
Kambe S,
Kameda K,
Hirashita T.
Synthesis 2003; 751
6a
Klimczak UK,
Zambroń BK.
Chem. Commun. 2015; 51: 6796
6b
Plata P,
Klimczak U,
Zambroń BK.
J. Org. Chem. 2018; 83: 14527
6c
Domin S,
Plata P,
Zambroń BK.
J. Org. Chem. 2019; 84: 12268
6d
Klimczak U,
Staszewska-Krajewska O,
Zambroń BK.
RSC Adv. 2016; 6: 26451
7
Domin S,
Kędzierski J,
Zambroń BK.
Org. Lett. 2019; 21: 3904
8a
Lee W,
Kim K.-H,
Surman MD,
Miller MJ.
J. Org. Chem. 2003; 68: 139
8b
Cesario C,
Miller MJ.
Org. Lett. 2009; 11: 1293
9
Anwar U,
Grigg R,
Rasparini M,
Savic V,
Sridharan V.
Chem. Commun. 2000; 645
10
Cooper IR,
Grigg R,
MacLachlan WS,
Sridharan V,
Thornton-Pett M.
Tetrahedron Lett. 2003; 44: 403
11a
Mikami K,
Shimizu M.
J. Synth. Org. Chem. Jpn. 1993; 51: 21
11b
Mikami K,
Shimizu M,
Zhang H.-C,
Maryanoff BE.
Tetrahedron 2001; 57: 2917
11c
Thomas EJ.
Chem. Rec. 2007; 7: 115
11d
Jiang H,
Albrecht Ł,
Jørgensen KA.
Chem. Sci. 2013; 4: 2287
12
Marshall JA,
Hinkle KW.
J. Org. Chem. 1995; 60: 1920
13
Donnelly S,
Thomas EJ,
Arnott EA.
Chem. Commun. 2003; 1460
14
Issac MB,
Chan T.-H.
Tetrahedron Lett. 1995; 36: 8957
15a
Loh T.-P,
Tan K.-T,
Yang J.-Y,
Xiang C.-L.
Tetrahedron Lett. 2001; 42: 8701
15b
Loh T.-P,
Tan K.-T,
Hu Q.-Y.
Tetrahedron Lett. 2001; 42: 8705
15c
Tan K.-T,
Chng S.-S,
Cheng H.-S,
Loh T.-P.
J. Am. Chem. Soc. 2003; 125: 2958
16
Norsikian S,
Lubineau A.
Org. Biomol. Chem. 2005; 3: 4089
17a
Araki S,
Hirashita T,
Shimizu K,
Ikeda T,
Butsugan Y.
Tetrahedron 1996; 52: 2803
17b
Araki S,
Hirashita T,
Shimizu H,
Yamamura H,
Kawai M,
Butsugan Y.
Tetrahedron Lett. 1996; 37: 8417
17c
Hirashita T,
Kamei T,
Horie T,
Yamamura H,
Kawai M,
Araki S.
J. Org. Chem. 1999; 64: 172
18a
Schinz H,
Seidel CF.
Helv. Chim. Acta 1942; 25: 1572
18b
Schinz H,
Bourquin JP.
Helv. Chim. Acta 1942; 25: 1591
18c
Bohlmann F,
Zdero C,
Faass U.
Chem. Ber. 1973; 106: 2904
19a
Takemoto Y,
Anzai M,
Yanada R,
Fujii N,
Ohno H,
Ibuka T.
Tetrahedron Lett. 2001; 42: 1725
19b
Anzai M,
Yanada R,
Fujii N,
Ohno H,
Ibuka T,
Takemoto Y.
Tetrahedron 2002; 58: 5231
20a
Ohno H,
Hamaguchi H,
Tanaka T.
Org. Lett. 2000; 2: 2161
20b
Ohno H,
Hamaguchi H,
Tanaka T.
J. Org. Chem. 2001; 66: 1867
21
Xin T,
Okamoto S,
Sato F.
Tetrahedron Lett. 1998; 39: 6927
22a
Behnke D,
Hamm S,
Hennig L,
Welzel P.
Tetrahedron Lett. 1997; 38: 7059
22b
Behnke D,
Hennig L,
Findeisen M,
Welzel P,
Müller D,
Thormann M,
Hofmann H.-J.
Tetrahedron 2000; 56: 108
23
Morris DI,
Greenberger LM,
Bruggemann EP,
Cardarelli C,
Gottesman MM,
Pastan I,
Seamon KB.
Mol. Pharmacol. 1994; 46: 329
24
Babu SA,
Yasuda M,
Baba A.
J. Org. Chem. 2007; 72: 10264
25a
Lombardo M,
Girotti R,
Morganti S,
Trombini C.
Org. Lett. 2001; 3: 2981
25b
Lombardo M,
Morganti S,
Trombini C.
J. Org. Chem. 2003; 68: 997
25c
Lombardo M,
Girotti R,
Morganti S,
Trombini C.
Chem. Commun. 2001; 2310
25d
Lombardo M,
Licciulli S,
Trombini C.
Pure Appl. Chem. 2004; 76: 657
26
Bottoni A,
Lombardo M,
Miscione GP,
Pujol Algué JB,
Trombini C.
J. Org. Chem. 2008; 73: 418
27
Lombardo M,
Licciulli S,
Trombini C.
Tetrahedron Lett. 2003; 44: 9147
28a
Mizushina Y,
Xu X,
Asano N,
Kasai N,
Kato A,
Takemura M,
Asahara H,
Linn S,
Sugawara F,
Yoshida H,
Sakaguchi K.
Biochem. Biophys. Res. Commun. 2003; 304: 78
28b
Popowycz F,
Gerber-Lemaire S,
Demange R,
Rodriguez-Garcia E,
Asenjo AT. C,
Robina I,
Vogel P.
Bioorg. Med. Chem. Lett. 2001; 11: 2489
28c
Asano N,
Oseki K,
Kizu H,
Matsui K.
J. Med. Chem. 1994; 37: 3701
28d
Fleet GW. J,
Karpas A,
Dwek RA,
Fellows LE,
Tyms AS,
Petursson S,
Namgoong SK,
Ramsden NG,
Smith PW.
FEBS Lett. 1988; 237: 128
29
Lombardo M,
Gianotti K,
Licciulli S,
Trombini C.
Tetrahedron 2004; 60: 11725
30
Palmelund A,
Madsen R.
J. Org. Chem. 2005; 70: 8248
31
Stanetty C,
Baxendale IR.
Eur. J. Org. Chem. 2015; 2718
32a
Kosma P.
Curr. Org. Chem. 2008; 12: 1021
32b
Holst O.
FEMS Microbiol. Lett. 2007; 271: 3
33
Draskovits M,
Stanetty C,
Baxendale IR,
Mihovilovic MD.
J. Org. Chem. 2018; 83: 2647
34
Lombardo M,
Pasi F,
Tiberi C,
Trombini C.
Synthesis 2005; 2609
35
Lombardo M,
Pasi F,
Trombini C.
Eur. J. Org. Chem. 2006; 3061
36
Lombardo M,
Capdevila MG,
Pasi F,
Trombini C.
Org. Lett. 2006; 8: 3303
37a
Schneiter R.
Bioessays 1999; 21: 1004
37b
Sharma C,
Smith T,
Li S,
Schroepfer GJ. Jr,
Needleman DH.
Chem. Phys. Lipids 2000; 104: 1
38
Cossy J,
Rasamison C,
Pardo DG,
Marshall JA.
Synlett 2001; 629
39
Hirashita T,
Kambe S,
Tsuji H,
Omori H,
Araki S.
J. Org. Chem. 2004; 69: 5054
40
Hirashita T,
Kambe S,
Tsuji H,
Araki S.
Chem. Commun. 2006; 2595
41
Carey JS,
Thomas EJ.
Synlett 1992; 585
42
Canac Y,
Levoirier E,
Lubineau A.
J. Org. Chem. 2001; 66: 3206
43
Miyabe H,
Yamaoka Y,
Naito T,
Takemoto Y.
J. Org. Chem. 2003; 68: 6745
44a
Paquette LA,
Isaac MB.
Heterocycles 1998; 47: 107
44b
Paquette LA,
Rothhaar RR,
Isaac M,
Rogers LM,
Rogers RD.
J. Org. Chem. 1998; 63: 5463
45
Paquette LA,
Rothhaar RR.
J. Org. Chem. 1999; 64: 217
46a
Loh T.-P,
Yin Z,
Song H.-Y,
Tan K.-L.
Tetrahedron Lett. 2003; 44: 911
46b
Lee K.-C,
Loh T.-P.
Chem. Commun. 2006; 40: 4209
47
Márquez F,
Llebaria A,
Delgado A.
Org. Lett. 2000; 2: 547
48
Paquette LA,
Bennett GD,
Chhatriwalla A,
Isaac MB.
J. Org. Chem. 1997; 62: 3370
49
Paquette LA,
Bennett GD,
Isaac MB,
Chhatriwalla A.
J. Org. Chem. 1998; 63: 1836
50
Fischer M,
Schmölzer C,
Nowikow C,
Schmid W.
Eur. J. Org. Chem. 2011; 1645
51
Lin M.-J,
Loh T.-P.
J. Am. Chem. Soc. 2003; 125: 13042
52
Miao W,
Lu W,
Chan TH.
J. Am. Chem. Soc. 2003; 125: 2412