RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(05): 763-768
DOI: 10.1055/s-0039-1691528
DOI: 10.1055/s-0039-1691528
paper
Direct Oxidative Dearomatization of Indoles with Aromatic Ketones: Rapid Access to 2,2-Disubstituted Indolin-3-ones
This work was financially supported by the National Natural Science Foundation of China (No. 21801093) and the Natural Science Foundation of Shandong Province (Nos. ZR2017BB006, JQ201721).Weitere Informationen
Publikationsverlauf
Received: 16. Oktober 2019
Accepted after revision: 16. November 2019
Publikationsdatum:
28. November 2019 (online)

§ These authors contributed equally to this work
Abstract
A metal-free oxidative dearomatization of indoles with aromatic ketones mediated by TEMPO oxoammonium salt is described. The dearomatization proceeds smoothly and displays a broad substrate scope with respect to both indoles and aromatic ketones in the presence of H2SO4, affording the corresponding 2,2-disubstituted indolin-3-ones in good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691528.
- Supporting Information
-
References
- 1a Lin L.-Z, Shen J.-H, He X, Zhang W.-Y. Acta Chim. Sin. 1988; 3: 258
- 1b Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. J. Am. Chem. Soc. 1990; 112: 808
- 1c Wu PL, Hsu YL, Jao CW. J. Nat. Prod. 2006; 69: 1467
- 1d Liu J.-F, Jiang Z.-Y, Wang R.-R, Zheng Y.-T, Chen J.-J, Zhang XM, Ma YB. Org. Lett. 2007; 9: 4127
- 1e Kato H, Yoshida T, Tokue T, Nojiri Y, Hirota H, Ohta T, Williams RM, Tsukamoto S. Angew. Chem. Int. Ed. 2007; 46: 2254
- 1f Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H. J. Nat. Prod. 2010; 73: 1438
- 1g Zhang X, Mu T, Zhan F, Ma L, Liang G. Angew. Chem. Int. Ed. 2011; 50: 6164
- 1h Abe T, Kukita A, Akiyama K, Naito T, Uemura D. Chem. Lett. 2012; 41: 728
- 1i Zhao B, Hao X.-Y, Zhang J.-X, Liu S, Hao X.-J. Org. Lett. 2013; 15: 528
- 2a Ackermann L. Chem. Rev. 2011; 111: 1315
- 2b Arockiam PB, Bruneau C, Dixneuf P. Chem. Rev. 2012; 112: 5879
- 2c Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 2d Torres-Ochoa RO, Buyck T, Wang Q, Zhu J.-P. Angew. Chem. Int. Ed. 2018; 57: 5679
- 2e Lauwick H, Sun Y, Akdas-Kilig H, Derien S, Achard M.-J. Chem. Eur J. 2018; 24: 7964
- 2f Yang L.-C, Tan Z.-Y, Rong Z.-Q, Liu R.-Y, Wang Y.-N, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 7860
- 3a Ardakani MA, Smalley RK. Tetrahedron Lett. 1979; 20: 4769
- 3b Ardakani MA, Alkhader MA, Lippiatt JH, Patel DI, Smalley RK, Higson SJ. J. Chem. Soc., Perkin Trans. 1 1986; 1107
- 3c Wetzel A, Gagosz F. Angew. Chem. Int. Ed. 2011; 50: 7354
- 3d Goriya Y, Ramana CV. Chem. Commun. 2013; 49: 6376
- 3e Mothe SR, Novianti ML, Ayers BJ, Chan PW. H. Org. Lett. 2014; 16: 4110
- 3f Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX. Angew. Chem. Int. Ed. 2015; 54: 11205
- 3g Li YJ, Yan N, Liu CH, Yu Y, Zhao YL. Org. Lett. 2017; 19: 1160
- 3h Xia Z, Hu J, Gao YQ, Yao Q, Xie W. Chem. Commun. 2017; 53: 7485
- 3i Fu WQ, Song QL. Org. Lett. 2018; 20: 393
- 4a Mérour JY, Chichereau L, Finet JP. Tetrahedron Lett. 1992; 33: 3867
- 4b Rueping M, Raja S, Núñez A. Adv. Synth. Catal. 2011; 353: 563
- 4c Jin CY, Wang Y, Liu YZ, Shen C, Xu PF. J. Org. Chem. 2012; 77: 11307
- 4d Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, Luis J, Ruano G, Alemán J. Chem. Commun. 2012; 48: 9759
- 4e Liu JX, Zhou QQ, Deng JG, Chen YC. Org. Biomol. Chem. 2013; 11: 8175
- 4f Zhao YL, Wang Y, Cao J, Liang YM, Xu PF. Org. Lett. 2014; 16: 2438
- 4g Huang JR, Qin L, Zhu YQ, Song Q, Dong L. Chem. Commun. 2015; 51: 2844
- 4h Dhara K, Mandal T, Das J, Dash J. Angew. Chem. Int. Ed. 2015; 54: 15831
- 5a Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
- 5b Higuchi K, Sato Y, Kojima S, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Tetrahedron Lett. 2010; 66: 1236
- 6 Suneel Kumar CV, Ramana CV. Org. Lett. 2015; 17: 2870
- 7 Shao Y, Zeng YM, Ji JY, Sun XQ, Yang H.-T, Miao CB. J. Org. Chem. 2016; 81: 12443
- 8a Guo C, Schedler M, Daniliuc C.-G, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
- 8b Guo J, Lin Z.-H, Chen K.-B, Xie Y, Chan AS. C, Weng J, Lu G. Org. Chem. Front. 2017; 4: 1400
- 8c Yarlagadda S, Reddy CR, Ramesh B, Ravikumar G, Sridhar B, Reddy BV. S. Eur. J. Org. Chem. 2018; 1364
- 9a Li JS, Liu YJ, Zhang GW, Ma JA. Org. Lett. 2017; 19: 6364
- 9b Li JS, Liu YJ, Li S, Ma JA. Chem. Commun. 2018; 54: 9151
- 10a Zhang XX, Li P, Lyu C, Yong WX, Li J, Pan XY, Zhu XB, Rao WD. Adv. Synth. Catal. 2017; 359: 4147
- 10b Li P, Yong WX, Sheng R, Zhu XB, Zhang XX. Adv. Synth. Catal. 2017; 361: 201
- 11a Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
- 11b Buller MJ, Cook TG, Kobayashi Y. Heterocycles 2007; 72: 163
- 11c Zhang C, Li S, Bureš F, Lee R, Ye X, Jiang Z. ACS Catal. 2016; 6: 6853
- 11d Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Org. Lett. 2016; 18: 1534
- 11e Huang H, Cai J, Ji X, Xiao F, Chen Y, Deng G. Angew. Chem. Int. Ed. 2016; 55: 307
- 11f Jiang X, Zhu B, Lin K, Wang G, Su W, Yu C. Org. Biomol. Chem. 2019; 17: 2199
- 11g Ding X, Dong C, Guan Z, He Y. Angew. Chem. Int. Ed. 2019; 58: 118
- 12a Liu X, Yan X, Tang Y, Jiang CS, Yu JH, Wang K, Zhang H. Chem. Commun. 2019; 55: 6535
- 12b Liu X, Yan X, Yu JH, Tang Y, Wang K, Zhang H. Org. Lett. 2019; 21: 5626