Subscribe to RSS
DOI: 10.1055/s-0039-1691561
Synthesis of N-Heterocycles via Transition-Metal-Catalyzed Tandem Addition/Cyclization of a Nitrile
This work was supported by the Ministry of Science and Technology, Taiwan (R.O.C.) (MOST 108-2113-M-032-001).Publication History
Received: 16 November 2019
Accepted after revision: 09 December 2019
Publication Date:
09 January 2020 (online)
Abstract
The diverse methodologies to synthesize N-heterocycles through transition-metal-catalyzed cascade addition/cyclization of a nitrile are discussed in this review. Aspects relating to three types of transition-metal-catalyzed addition of a nitrile with subsequent cyclization include (1) a transition-metal acting as a Lewis acid to accelerate the nucleophilic addition of a nitrile, (2) the late-transition-metal-catalyzed 1,2-insertion of a nitrile, and (3) an in situ generated radical by transition-metal catalysis to implement a radical addition/cyclization tandem reaction. Applications for the synthesis of natural alkaloids, their derivatives, and some bioactive compounds are also summarized herein.
1 Introduction
2 Nucleophilic Addition of a Nitrile Accelerated by a Lewis Acid
2.1 Late-Transition-Metal Catalysis
2.2 Early-Transition-Metal Catalysis
2.3 Lanthanide-Metal Catalysis
2.4 Cyclization from N-Arylnitriliums
3 Transition-Metal-Catalyzed Insertion of a Nitrile
4 Transition-Metal-Catalyzed Radical Addition of a Nitrile
5 Conclusions
-
References
- 1a Bracca AB. J, Heredia DA, Larghi EL, Kaufman TS. Eur. J. Org. Chem. 2014; 7979
- 1b Khan I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
- 1c Jin Z. Nat. Prod. Rep. 2011; 28: 1143
- 1d Jin Z. Nat. Prod. Rep. 2011; 28: 1126
- 1e Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
- 1f Jin Z. Nat. Prod. Rep. 2005; 22: 111
- 1g Jin Z. Nat. Prod. Rep. 2003; 20: 606
- 1h Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 2a Subbaraju GV, Kavitha J, Rajasekhar D, Jimenez JI. J. Nat. Prod. 2004; 67: 461
- 2b Lewis JR. J. Nat. Prod. 1993; 10: 291
- 2c Tanahashi T, Zenk MH. J. Nat. Prod. 1990; 53: 579
- 3a Blasko G. In The Alkaloids . Brossi A. Academic Press; New York: 1990: 157-224
- 3b Blaskó G, Hussain SF, Freyer AJ, Shamma M. Tetrahedron Lett. 1981; 22: 3127
- 3c Govindachari TR, Viswanathan N. Phytochemistry 1972; 11: 3529
- 4a Chen M.-H, Hsieh J.-C, Lee Y.-H, Cheng C.-H. ACS Catal. 2018; 8: 9364
- 4b Fan-Chiang T.-T, Wang H.-K, Hsieh J.-C. Tetrahedron 2016; 72: 5640
- 4c Jhang Y.-Y, Fan-Chiang T.-T, Huang J.-M, Hsieh J.-C. Org. Lett. 2016; 18: 1154
- 4d Liu C.-C, Hsieh J.-C, Korivi R.-P, Cheng C.-H. Chem. Eur. J. 2015; 21: 9544
- 5a Sidoryk K, Świtalska M, Jaromin A, Cmoch P, Bujak I, Kaczmarska M, Wietrzyk J, Dominguez EG, Żarnowski R, Andes DR, Bańkowski K, Cybulski M, Kaczmarek Ł. Eur. J. Med. Chem. 2015; 105: 208
- 5b Baechler SA, Fehr M, Habermeyer M, Hofmann A, Merz K.-H, Fiebig H.-H, Marko D, Eisenbrand G. Bioorg. Med. Chem. 2013; 21: 814
- 5c Lamoral-Theys D, Andolfi A, Goietsenoven GV, Cimmino A, Calvé BL, Wauthoz N, Mégalizzi V, Gras T, Bruyère C, Dubois J, Mathieu V, Kornienko A, Kiss R, Evidente A. J. Med. Chem. 2009; 52: 6244
- 5d Chmura SJ, Dolan ME, Cha A, Mauceri HJ, Kufe DW, Weichselbaum RR. Clin. Cancer Res. 2000; 6: 737
- 5e Peczyńska-Czoch W, Pognan F, Kaczmarek Ł, Boratyński J. J. Med. Chem. 1994; 37: 3503
- 5f Zee-Cheng RK.-Y, Yan S.-J, Cheng CC. J. Med. Chem. 1978; 21: 199
- 6a Parhi A, Kelley C, Kaul M, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2012; 22: 7080
- 6b Godlewska J, Luniewski W, Zagrodzki B, Kaczmarek Ł, Bielawska-Pohl A, Dus D, Wietrzyk J, Opolski A, Siwko M, Jaromin A, Jakubiak A, Kozubek A, Peczyńska-Czoch W. Anticancer Res. 2005; 25: 2857
- 7a Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
- 7b Shaaban MR, El-Sayed R, Elwahy AH. M. Tetrahedron 2011; 67: 6095
- 7c Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
- 8a Xie L.-G, Niyomchon S, Mota AJ, González L, Maulide N. Nat. Commun. 2016; 7: 10914
- 8b Ohashi M, Takeda I, Ikawa M, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 18018
- 9a Joshi A, Mohan DC, Adimurthy S. J. Org. Chem. 2016; 81: 9461
- 9b Zhou H, Zeng X, Ding L, Xie Y, Zhong G. Org. Lett. 2015; 17: 2385
- 9c Gutmann B, Roduit J.-P, Roberge D, Kappe CO. Angew. Chem. Int. Ed. 2010; 49: 7101
- 9d Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
- 9e Yu M, Pagenkopf BL. J. Am. Chem. Soc. 2003; 125: 8122
- 10 Johnson F, Madronero R. In Advances in Heterocyclic Chemistry, Vol. 6. Katritzky AR, Boulton AJ. Academic Press; New York: 1966: 95-146
- 11a Kukushkin VY, Pombeiro AJ. L. Chem. Rev. 2002; 102: 1771
- 11b Murahashi S.-I, Takaya H. Acc. Chem. Res. 2000; 33: 225
- 12 Ju Y, Liu F, Li C. Org. Lett. 2009; 11: 3582
- 13 Ueda S, Nagasawa H. J. Am. Chem. Soc. 2009; 131: 15080
- 14a Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5524
- 14b Casitas A, Canta M, Solà M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
- 14c Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem. Sci. 2010; 1: 326
- 15 Hsieh J.-C, Cheng A.-Y, Fu J.-H, Kang T.-W. Org. Biomol. Chem. 2012; 10: 6404
- 16 Chen Y.-F, Wu Y.-S, Jhan Y.-H, Hsieh J.-C. Org. Chem. Front. 2014; 1: 253
- 17 Viladomat F, Bastida J, Tribo G, Codina C, Rubiralta M. Phytochemistry 1990; 29: 1307
- 18a Bernardo PH, Wan K.-F, Sivaraman T, Xu J, Moore FK, Hung AW, Mok HY. K, Yu VC, Chai CL. L. J. Med. Chem. 2008; 51: 6699
- 18b Casu L, Cottiglia F, Leonti M, De Logu A, Agus E, Tse-Dinh Y.-C, Lombardo V, Sissi C. Bioorg. Med. Chem. Lett. 2011; 21: 7041
- 19 Nakanishi T, Suzuki M, Saimoto A, Kabasawa T. J. Nat. Prod. 1999; 62: 864
- 20 Chen Y.-F, Hsieh J.-C. Org. Lett. 2014; 16: 4642
- 21 Yu X, Gao L, Jia L, Yamamoto Y, Bao M. J. Org. Chem. 2018; 83: 10352
- 22 Li C, An S, Zhu Y, Zhang J, Kang Y, Liu P, Wang Y, Li J. RSC Adv. 2014; 4: 49888
- 23a Yeh L.-H, Wang H.-K, Pallikonda G, Ciou Y.-L, Hsieh J.-C. Org. Lett. 2019; 21: 1730
- 23b Lavrado J, Moreira R, Paulo A. Curr. Med. Chem. 2010; 17: 2348
- 24 Li J, Chen L, Chin E, Lui AS, Zecic H. Tetrahedron Lett. 2010; 51: 6422
- 25 Kumar R, Asthana M, Singh RM. J. Org. Chem. 2017; 82: 11531
- 26 Shen H, Xie Z. J. Am. Chem. Soc. 2010; 132: 11473
- 27 Hong L, Shao Y, Zhang L, Zhou X. Chem. Eur. J. 2014; 20: 8551
- 28 Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
- 29 Cao CK, Sheng J, Chen C. Synthesis 2017; 49: 5081
- 30 Bercaw JE, Davies DL, Wolczanski PT. Organometallics 1986; 5: 443
- 31a Michelin RA, Mozzon M, Bertani R. Coord. Chem. Rev. 1996; 147: 299
- 31b Griffith WP. Q. Rev. Chem. Soc. 1962; 16: 188
- 32 Larock RC, Tian Q, Pletnev AA. J. Am. Chem. Soc. 1999; 121: 3238
- 33a Hsieh J.-C, Chen Y.-C, Cheng A.-Y, Tseng H.-C. Org. Lett. 2012; 14: 1282
- 33b Wong Y.-C, Parthasarathy K, Cheng C.-H. Org. Lett. 2010; 12: 1736
- 33c Shimizu H, Murakami M. Chem. Commun. 2007; 2855
- 33d Zhao B, Lu X. Org. Lett. 2006; 8: 5987
- 33e Zhou C, Larock RC. J. Org. Chem. 2006; 71: 3551
- 33f Zhou C, Larock RC. J. Am. Chem. Soc. 2004; 126: 2302
- 33g Ueura K, Miyamura S, Satoh T, Miyaura M. J. Organomet. Chem. 2000; 595: 31
- 34a Xuan Z, Jung DJ, Jeon HJ, Lee S.-g. J. Org. Chem. 2016; 81: 10094
- 34b Kim JH, Ko YO, Bouffard J, Lee S.-g. Chem. Soc. Rev. 2015; 44: 2489
- 34c Kim JH, Bouffard J, Lee S.-g. Angew. Chem. Int. Ed. 2014; 53: 6435
- 35a Tian Q, Pletnev AA, Larock RC. J. Org. Chem. 2003; 68: 339
- 35b Pletnev AA, Larock RC. J. Org. Chem. 2002; 67: 9428
- 35c Pletnev AA, Tian Q, Larock RC. J. Org. Chem. 2002; 67: 9276
- 36 Qi L, Hu K, Yu S, Zhu J, Cheng T, Wang X, Chen J, Wu H. Org. Lett. 2017; 19: 218
- 37 Hu K, Qi L, Yu S, Cheng T, Wang X, Li Z, Xia Y, Chen J, Wua H. Green Chem. 2017; 19: 1740
- 38 Yu S, Qi L, Hu K, Gong J, Cheng T, Wang Q, Chen J, Wu H. J. Org. Chem. 2017; 82: 3631
- 39 Zhang Y, Shao Y, Gong J, Hu K, Cheng T, Chen J. Adv. Synth. Catal. 2018; 360: 3260
- 40 Hu K, Zhen Q, Gong J, Cheng T, Qi L, Shao Y, Chen J. Org. Lett. 2018; 20: 3083
- 41 Yao X, Shao Y, Hu M, Zhang M, Li S, Xia Y, Cheng T, Chen J. Adv. Synth. Catal. 2019; 361: 4707
- 42 Yao X, Shao Y, Hu M, Xia Y, Cheng T, Chen J. Org. Lett. 2019; 21: 7697
- 43 Jaiswal Y, Kumar Y, Pal J, Subramanian R, Kumar A. Chem. Commun. 2018; 54: 7207
- 44a Wan J.-C, Huang J.-M, Jhan Y.-H, Hsieh J.-C. Org. Lett. 2013; 15: 2742
- 44b Li W, Xu Z, Sun P, Jiang X, Fang M. Org. Lett. 2011; 13: 1286
- 45 Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
- 46 Servais A, Azzouz M, Lopes D, Courillon C, Malacria M. Angew. Chem. Int. Ed. 2007; 46: 576
- 47 Parsons AF. In An Introduction to Free Radical Chemistry . Parsons AF. Blackwell Science Ltd; Oxford: 2000: 96-211
- 48a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 48b Zhang N, Samanta SR, Rosen BM, Percec V. Chem. Rev. 2014; 114: 5848
- 48c Ouchi M, Terashima T, Sawamoto M. Chem. Rev. 2009; 109: 4963
- 49 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 50 Gurry M, Aldabbagh F. Org. Biomol. Chem. 2016; 14: 3849
- 51 Sun X, Li J, Ni Y, Ren D, Hu Z, Yu S. Asian J. Org. Chem. 2014; 3: 1317
- 52 Han Y.-Y, Jiang H, Wang R, Yu S. J. Org. Chem. 2016; 81: 7276
- 53 Yu Y, Cai Z, Yuan W, Liu P, Sun P. J. Org. Chem. 2017; 82: 8148
- 54 Liu X, Wu Z, Zhang Z, Liu P, Sun P. Org. Biomol. Chem. 2018; 16: 414
- 55 Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Org. Biomol. Chem. 2019; 17: 3374
- 56 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 57 Shang J.-Q, Wang S.-S, Fu H, Li Y, Yang T, Li Y.-M. Org. Chem. Front. 2018; 5: 1945
- 58 Shan X.-H, Zheng H.-X, Yang B, Tie L, Fu J.-L, Qu J.-P, Kang Y.-B. Nat. Commun. 2019; 10: 908
Selected reviews:
Selected recent reports:
For recent reviews, see: