Semin Thromb Hemost 2019; 45(05): 490-501
DOI: 10.1055/s-0039-1692703
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Current and Emerging Direct Oral Anticoagulants: State-of-the-Art

Giuseppe Lippi
1   Section of Clinical Biochemistry, University of Verona, Verona, Italy
,
Robert Gosselin
2   Thrombosis and Hemostasis Center, University of California Davis, Sacramento, California, United States
,
Emmanuel J. Favaloro
3   Department of Haematology, Sydney Centers for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
19 June 2019 (online)

Abstract

Anticoagulant drugs comprise a specific subcategory of antithrombotic agents that act to inhibit blood coagulation at various stages, reducing clot development and ultimately lowering the risk of developing new-onset or recurrent thrombosis. Although the long history of anticoagulant drugs has been characteristically shaped by coumarin and heparin derivatives, a new generation of direct oral anticoagulants (DOACs), which specifically inhibit thrombin or activated factor X, combine many advantages of their progenitor drugs, and hence are prepotently revolutionizing the landscape of antithrombotic therapy. Several drugs (apixaban [BMS-562247], dabigatran [BIBR953], edoxaban [DU-1766], rivaroxaban [BAY 59–7939]) have already received widespread approval by national or supranational medicinal agencies. This narrative article provides a state-of-the-art for these and for several other DOACs at different stages of clinical evaluation (betrixaban, darexaban, eribaxaban, letaxaban, nokxaban), and certain others whose development has been discontinued (AZD-0837, fidexaban, LY517717, odiparcil, otamixaban, TTP889, and ximelagatran). What clearly emerges from our analysis is that DOACs sharing very similar mechanisms of action are still characterized by different efficacy and safety profiles. This not only depends on biochemical, biological, and pharmacokinetic characteristics, but also on lack of standardization between different clinical trials in terms of targeted disease, patient recruitment, sample size, duration and endpoints, as well as lack of harmonization around procedures used for drug licensing. These factors contribute to challenging the minds of physicians, who may find difficulty navigating their way through multiple indications, different pharmacological profiles, various side effects, and specific drug-to-drug interactions. Such considerations also burden laboratory professionals, who may face organizational and economic challenges in developing and/or implementing multiple assays to assess the pharmacodynamics (effect on coagulation) or pharmacokinetics (drug levels) of DOACs.

 
  • References

  • 1 Lippi G, Favaloro EJ. Laboratory hemostasis: milestones in clinical chemistry and laboratory medicine. Clin Chem Lab Med 2013; 51 (01) 91-97
  • 2 Franchini M, Liumbruno GM, Bonfanti C, Lippi G. The evolution of anticoagulant therapy. Blood Transfus 2016; 14 (02) 175-184
  • 3 Lippi G, Franchini M, Favaloro EJ. Pharmacogenetics of vitamin K antagonists: useful or hype?. Clin Chem Lab Med 2009; 47 (05) 503-515
  • 4 Baluwala I, Favaloro EJ, Pasalic L. Therapeutic monitoring of unfractionated heparin - trials and tribulations. Expert Rev Hematol 2017; 10 (07) 595-605
  • 5 Hobl EL, Jilma B. Tecarfarin: a novel vitamin K antagonist. Thromb Haemost 2017; 117 (11) 2009-2011
  • 6 Harenberg J. Development of idraparinux and idrabiotaparinux for anticoagulant therapy. Thromb Haemost 2009; 102 (05) 811-815
  • 7 Barnes GD, Ageno W, Ansell J, Kaatz S. ; Subcommittee on the Control of Anticoagulation of the International Society on Thrombosis and Haemostasis. Recommendation on the nomenclature for oral anticoagulants: communication from the SSC of the ISTH. J Thromb Haemost 2015; 13 (06) 1154-1156
  • 8 Gosselin RC, Adcock DM, Bates SM. , et al. International Council for Standardization in Haematology (ICSH) Recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost 2018; 118 (03) 437-450
  • 9 Lippi G, Mattiuzzi C, Cervellin G, Favaloro EJ. Direct oral anticoagulants: analysis of worldwide use and popularity using Google Trends. Ann Transl Med 2017; 5 (16) 322
  • 10 Lippi G, Mattiuzzi C, Adcock D, Favaloro EJ. Oral anticoagulants around the world: an updated state-of the art analysis. Ann Blood 2018; 3: 49
  • 11 Favaloro EJ, Lippi G, Koutts J. Laboratory testing of anticoagulants: the present and the future. Pathology 2011; 43 (07) 682-692
  • 12 Lippi G, Favaloro EJ. Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus?. Clin Chem Lab Med 2015; 53 (02) 185-197
  • 13 Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor Xa inhibitors in development. Clin Pharmacokinet 2009; 48 (01) 1-22
  • 14 Huisman MV, Klok FA. Pharmacological properties of betrixaban. Eur Heart J Suppl 2018; 20 (Suppl E): E12-E15
  • 15 Food and Drug Administration. Betrixaban. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208383s000lbl.pdf . Accessed May 8, 2019
  • 16 European Medicines Agency. Dexxience. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/dexxience . Accessed May 8, 2019
  • 17 European Medicines Agency. Dexxience: EPAR - Refusal public assessment report. Available at: https://www.ema.europa.eu/en/documents/assessment-report/dexxience-epar-refusal-public-assessment-report_.pdf . Accessed May 8, 2019
  • 18 Cohen AT, Harrington RA, Goldhaber SZ. , et al; APEX Investigators. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N Engl J Med 2016; 375 (06) 534-544
  • 19 Kalayci A, Gibson CM, Chi G. , et al. Asymptomatic deep vein thrombosis is associated with an increased risk of death: insights from the APEX trial. Thromb Haemost 2018; 118 (12) 2046-2052
  • 20 Gibson CM, Nafee T, Yee MK. , et al. Symptomatic event reduction with extended-duration betrixaban in acute medically ill hospitalized patients. Am Heart J 2018; 198: 84-90
  • 21 Chi G, Gibson CM, Kalayci A. , et al. Extended-duration betrixaban versus shorter-duration enoxaparin for venous thromboembolism prophylaxis in critically ill medical patients: an APEX trial substudy. Intensive Care Med 2019; 45 (04) 477-487
  • 22 Chi G, Yee MK, Amin AN. , et al. Extended-duration betrixaban reduces the risk of rehospitalization associated with venous thromboembolism among acutely ill hospitalized medical patients: findings from the APEX trial (Acute Medically Ill Venous Thromboembolism Prevention with Extended Duration Betrixaban Trial). Circulation 2018; 137 (01) 91-94
  • 23 Guy H, Laskier V, Fisher M. , et al. Cost-effectiveness of betrixaban compared with enoxaparin for venous thromboembolism prophylaxis in nonsurgical patients with acute medical illness in the United States. Pharmacoeconomics 2019; 37 (05) 701-714
  • 24 Siriez R, Evrard J, Dogné JM. , et al. Development of new methodologies for the chromogenic estimation of betrixaban concentrations in plasma. Int J Lab Hematol 2019; 41 (02) 250-261
  • 25 Hirayama F, Koshio H, Ishihara T. , et al. Discovery of N-[2-hydroxy-6-(4-methoxybenzamido)phenyl]-4- (4-methyl-1,4-diazepan-1-yl)benzamide (darexaban, YM150) as a potent and orally available factor Xa inhibitor. J Med Chem 2011; 54 (23) 8051-8065
  • 26 Iwatsuki Y, Sato T, Moritani Y. , et al. Biochemical and pharmacological profile of darexaban, an oral direct factor Xa inhibitor. Eur J Pharmacol 2011; 673 (1-3): 49-55
  • 27 Hashimoto T, Suzuki K, Kihara Y. , et al. Absorption, metabolism and excretion of darexaban (YM150), a new direct factor Xa inhibitor in humans. Xenobiotica 2013; 43 (06) 534-547
  • 28 Eriksson BI, Turpie AG, Lassen MR. , et al; ONYX Study Group. A dose escalation study of YM150, an oral direct factor Xa inhibitor, in the prevention of venous thromboembolism in elective primary hip replacement surgery. J Thromb Haemost 2007; 5 (08) 1660-1665
  • 29 Eriksson BI, Turpie AG, Lassen MR. , et al; ONYX-2 Study Group. Prevention of venous thromboembolism with an oral factor Xa inhibitor, YM150, after total hip arthroplasty. A dose finding study (ONYX-2). J Thromb Haemost 2010; 8 (04) 714-721
  • 30 Eriksson BI, Agnelli G, Gallus AS. , et al. Darexaban (YM150) versus enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a randomised phase IIb dose confirmation study (ONYX-3). Thromb Haemost 2014; 111 (02) 213-225
  • 31 Sakon M, Nakamura M. Darexaban (YM150) prevents venous thromboembolism in Japanese patients undergoing major abdominal surgery: Phase III randomized, mechanical prophylaxis-controlled, open-label study. Thromb Res 2012; 130 (03) e52-e59
  • 32 Fuji T, Nakamura M, Takeuchi M. Darexaban for the prevention of venous thromboembolism in Asian patients undergoing orthopedic surgery: results from 2 randomized, placebo-controlled, double-blind studies. Clin Appl Thromb Hemost 2014; 20 (02) 199-211
  • 33 Steg PG, Mehta SR, Jukema JW. , et al; RUBY-1 Investigators. RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome. Eur Heart J 2011; 32 (20) 2541-2554
  • 34 Lip GY, Halperin JL, Petersen P, Rodgers GM, Pall D, Renfurm RW. A Phase II, double-blind, randomized, parallel group, dose-finding study of the safety and tolerability of darexaban compared with warfarin in patients with non-valvular atrial fibrillation: the oral factor Xa inhibitor for prophylaxis of stroke in atrial fibrillation study 2 (OPAL-2). J Thromb Haemost 2015; 13 (08) 1405-1413
  • 35 Kohrt JT, Bigge CF, Bryant JW. , et al. The discovery of (2R,4R)-N-(4-chlorophenyl)-N- (2-fluoro-4-(2-oxopyridin-1(2H)-yl)phenyl)-4-methoxypyrrolidine-1,2-dicarboxamide (PD 0348292), an orally efficacious factor Xa inhibitor. Chem Biol Drug Des 2007; 70 (02) 100-112
  • 36 Xuan D, McBride S, Wastall P, Porcari A, DiCarlo L, Boyd RA. Safety, pharmacokinetics, and pharmacodynamics of PD 0348292, an oral, direct factor Xa inhibitor, after single and multiple dosings in healthy subjects. Clin Pharmacol Drug Dev 2016; 5 (01) 13-26
  • 37 Karnicki K, Leadley Jr RJ, Baxi S, Peterson T, Wysokinski W, McBane II RD. Comparison of PD0348292, a selective factor Xa inhibitor, to antiplatelet agents for the inhibition of arterial thrombosis. Thromb Haemost 2008; 99 (04) 759-766
  • 38 McBane II RD, Leadley Jr RJ, Baxi SM, Karnicki K, Wysokinski W. Iliac venous stenting: antithrombotic efficacy of PD0348292, an oral direct Factor Xa inhibitor, compared with antiplatelet agents in pigs. Arterioscler Thromb Vasc Biol 2008; 28 (03) 413-418
  • 39 Cohen AT, Boyd RA, Mandema JW, Dicarlo L, Pak R. ; A5571010 Investigators. An adaptive-design dose-ranging study of PD 0348292, an oral factor Xa inhibitor, for thromboprophylaxis after total knee replacement surgery. J Thromb Haemost 2013; 11 (08) 1503-1510
  • 40 Fujimoto T, Imaeda Y, Konishi N. , et al. Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor. J Med Chem 2010; 53 (09) 3517-3531
  • 41 Weitz JI, Cao C, Eriksson BI. , et al. A dose-finding study with TAK-442, an oral factor Xa inhibitor, in patients undergoing elective total knee replacement surgery. Thromb Haemost 2010; 104 (06) 1150-1157
  • 42 Goldstein S, Bates ER, Bhatt DL. , et al; AXIOM Investigators. Phase 2 study of TAK-442, an oral factor Xa inhibitor, in patients following acute coronary syndrome. Thromb Haemost 2014; 111 (06) 1141-1152
  • 43 Shinozawa E, Nakayama M, Imura Y. TAK-442, a direct factor Xa inhibitor, inhibits monocyte chemoattractant protein 1 production in endothelial cells via involvement of protease-activated receptor 1. Front Pharmacol 2018; 9: 1431
  • 44 Shinozawa E, Kawamura M. Anti-thrombotic effect of a factor Xa inhibitor TAK-442 in a rabbit model of arteriovenous shunt thrombosis stimulated with tissue factor. BMC Res Notes 2018; 11 (01) 776
  • 45 Rao PSS, Burkart T. Advances in oral anticoagulation therapy - What's in the pipeline?. Blood Rev 2017; 31 (04) 205-211
  • 46 Choi HY, Choi S, Kim YH, Lim HS. Population pharmacokinetic and pharmacodynamic modeling analysis of GCC-4401C, a novel direct factor Xa inhibitor, in healthy volunteers. CPT Pharmacometrics Syst Pharmacol 2016; 5 (10) 532-543
  • 47 Lip GY, Rasmussen LH, Olsson SB. , et al; Steering Committee. Oral direct thrombin inhibitor AZD0837 for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation: a Phase II study of AZD0837 in patients who are appropriate for but unable or unwilling to take vitamin K antagonist therapy. Thromb Res 2011; 127 (02) 91-99
  • 48 AstraZeneca Study Report Synopsis. Available at: https://web.archive.org/web/20131110014536/http://www.astrazenecaclinicaltrials.com/_mshost800325/content/clinical-trials/resources/pdf/D1250C00042 . Accessed May 12, 2019
  • 49 Karnicki K, McBane II RD, Miller RS. , et al. Inhibition and reversal of platelet-rich arterial thrombus in vivo: direct vs. indirect factor Xa inhibition. J Thromb Haemost 2004; 2 (12) 2162-2169
  • 50 Zafar MU, Farkouh ME, Osende J. , et al. Potent arterial antithrombotic effect of direct factor-Xa inhibition with ZK-807834 administered to coronary artery disease patients. Thromb Haemost 2007; 97 (03) 487-492
  • 51 Shen J, Yang J, Heyse W. , et al. Enantiomeric characterization and structure elucidation of Otamixaban. J Pharm Anal 2014; 4 (03) 197-204
  • 52 Steg PG, Mehta SR, Pollack Jr CV. , et al; TAO Investigators. Anticoagulation with otamixaban and ischemic events in non-ST-segment elevation acute coronary syndromes: the TAO randomized clinical trial. JAMA 2013; 310 (11) 1145-1155
  • 53 Roberts A. Anticoagulation therapy: otamixaban fails in NSTE-ACS. Nat Rev Cardiol 2013; 10 (11) 615
  • 54 Eriksson BI, Dahl OE, Lassen MR. , et al; Fixit Study Group. Partial factor IXa inhibition with TTP889 for prevention of venous thromboembolism: an exploratory study. J Thromb Haemost 2008; 6 (03) 457-463
  • 55 Agnelli G, Haas S, Ginsberg JS, Krueger KA, Dmitrienko A, Brandt JT. A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. J Thromb Haemost 2007; 5 (04) 746-753
  • 56 Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb Exp Pharmacol 2010; (196) 407-418
  • 57 Toomey JR, Abboud MA, Valocik RE. , et al. A comparison of the beta-D-xyloside, odiparcil, to warfarin in a rat model of venous thrombosis. J Thromb Haemost 2006; 4 (09) 1989-1996
  • 58 Lippi G, Favaloro EJ. Venous and arterial thromboses: two sides of the same coin?. Semin Thromb Hemost 2018; 44 (03) 239-248
  • 59 Facchinetti R, DeGuidi G, Pitoni F, Ricci G, Lippi G. Rapid and well tolerated action of idarucizumab for antagonizing dabigatran in a patient needing urgent thrombolysis: a case report. Blood Coagul Fibrinolysis 2017; 28 (07) 576-579
  • 60 Lippi G, Sanchis-Gomar F, Favaloro EJ. Andexanet: effectively reversing anticoagulation. Trends Pharmacol Sci 2016; 37 (06) 413-414
  • 61 Cesarman-Maus G, Ruiz-Argüelles GJ. News in the indications of direct oral anticoagulants according to the American College of Chest Physicians 2016 Guidelines. Curr Drug Metab 2017; 18 (07) 651-656
  • 62 Steffel J, Verhamme P, Potpara TS. , et al; ESC Scientific Document Group. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018; 39 (16) 1330-1393
  • 63 Xing J, Yang L, Yang Y. , et al. Design, synthesis and biological evaluation of novel 2,3-dihydroquinazolin- 4(1H)-one derivatives as potential fXa inhibitors. Eur J Med Chem 2017; 125: 411-422
  • 64 Xiong L, Qi Z, Zheng B. , et al. Inhibitory effect of triterpenoids from Panax ginseng on coagulation factor X. Molecules 2017; 22 (04) E649
  • 65 Chabata CV, Frederiksen JW, Sullenger BA, Gunaratne R. Emerging applications of aptamers for anticoagulation and hemostasis. Curr Opin Hematol 2018; 25 (05) 382-388
  • 66 Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38 (06) 1974-2023
  • 67 Danese E, Montagnana M, Lippi G. Factor XII in hemostasis and thrombosis: active player or (innocent) bystander?. Semin Thromb Hemost 2016; 42 (06) 682-688
  • 68 Khadse AN, Sharma MK, Murumkar PR, Rajput SJ, Yadav MR. Advances in the development of novel factor Xa inhibitors: a patent review. Mini Rev Med Chem 2018; 18 (16) 1332-1353
  • 69 Eikelboom JW, Connolly SJ, Brueckmann M. , et al; RE-ALIGN Investigators. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med 2013; 369 (13) 1206-1214
  • 70 Pengo V, Banzato A, Bison E, Zoppellaro G, Padayattil Jose S, Denas G. Efficacy and safety of rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome: Rationale and design of the Trial on Rivaroxaban in AntiPhospholipid Syndrome (TRAPS) trial. Lupus 2016; 25 (03) 301-306
  • 71 Adcock DM, Gosselin RC. Laboratory assessment of hemostatic and anticoagulant therapy. Semin Thromb Hemost 2017; 43 (03) 242-244
  • 72 Douxfils J, Gosselin RC. Laboratory assessment of direct oral anticoagulants. Semin Thromb Hemost 2017; 43 (03) 277-290
  • 73 Lippi G, Favaloro EJ. Laboratory monitoring of direct oral anticoagulants (DOACs) - the perfect storm?. Ann Transl Med 2017; 5 (01) 6