Semin Thromb Hemost 2019; 45(06): 559-568
DOI: 10.1055/s-0039-1693472
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cancer-Associated Thrombosis: A Two-Way Street

Bal Krishan Sharma
1   Cancer and Blood Diseases Institute, The Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
,
Matthew J. Flick
1   Cancer and Blood Diseases Institute, The Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
,
Joseph S. Palumbo
1   Cancer and Blood Diseases Institute, The Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
05 August 2019 (online)

Abstract

Pathological activation of the coagulation system occurs with virtually all forms of cancer, particularly epithelial malignancies. Accordingly, thrombosis is one of the most common comorbidities associated with cancer. Indeed, cancer-associated thromboembolism is the second leading cause of death for cancer patients, second only to the cancer itself. The identification of specific molecular mechanisms whereby tumor cells activate the coagulation system and drive thrombosis has been an active area of investigation for several decades. Studies in animal models and human trials have revealed that there is a bidirectional relationship between coagulation factor activity and cancer, whereby the pathological hemostatic system activation associated with cancer not only promotes thromboembolism but also drives progression of the malignancy. Numerous studies indicate that factors up and down the clotting cascade can contribute to various stages of cancer, including tumorigenesis, primary tumor growth, and metastasis. Although there are some mechanistic points of commonality, there are also clearly context-dependent contributions of coagulation components to cancer progression dependent on the type of cancer and stage of disease. It is also notable that in some instances, coagulation factors appear to contribute to cancer progression independently of their traditional roles in hemostasis and thrombosis. Here, the authors review the current state of the field with regard to hemostatic factor-driven cancer pathogenesis.

 
  • References

  • 1 Key NS, Khorana AA, Mackman N. , et al. Thrombosis in cancer: research priorities identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Res 2016; 76 (13) 3671-3675
  • 2 Khalil J, Bensaid B, Elkacemi H. , et al. Venous thromboembolism in cancer patients: an underestimated major health problem. World J Surg Oncol 2015; 13: 204
  • 3 Shaib W, Deng Y, Zilterman D, Lundberg B, Saif MW. Assessing risk and mortality of venous thromboembolism in pancreatic cancer patients. Anticancer Res 2010; 30 (10) 4261-4264
  • 4 Wun T, White RH. Epidemiology of cancer-related venous thromboembolism. Best Pract Res Clin Haematol 2009; 22 (01) 9-23
  • 5 Elyamany G, Alzahrani AM, Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol 2014; 8: 129-137
  • 6 Haddad TC, Greeno EW. Chemotherapy-induced thrombosis. Thromb Res 2006; 118 (05) 555-568
  • 7 Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007; 5 (03) 632-634
  • 8 Falanga A. Thrombophilia in cancer. Semin Thromb Hemost 2005; 31 (01) 104-110
  • 9 Falanga A, Marchetti M. Heparin in tumor progression and metastatic dissemination. Semin Thromb Hemost 2007; 33 (07) 688-694
  • 10 Falanga A, Marchetti M, Vignoli A, Balducci D. Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin Adv Hematol Oncol 2003; 1 (11) 673-678
  • 11 van Doormaal FF, Büller HR. Heparin and survival in cancer patients. Hematol Oncol Clin North Am 2010; 24 (04) 777-784 , ix–x
  • 12 Zacharski LR, Prandoni P, Monreal M. Warfarin versus low-molecular-weight heparin therapy in cancer patients. Oncologist 2005; 10 (01) 72-79
  • 13 Haaland GS, Falk RS, Straume O, Lorens JB. Association of warfarin use with lower overall cancer incidence among patients older than 50 years. JAMA Intern Med 2017; 177 (12) 1774-1780
  • 14 Pengo V, Noventa F, Denas G. , et al. Long-term use of vitamin K antagonists and incidence of cancer: a population-based study. Blood 2011; 117 (05) 1707-1709
  • 15 Dunn AL, Austin H, Soucie JM. Prevalence of malignancies among U.S. male patients with haemophilia: a review of the Haemophilia Surveillance System. Haemophilia 2012; 18 (04) 532-539
  • 16 Vossen CY, Hoffmeister M, Chang-Claude JC, Rosendaal FR, Brenner H. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol 2011; 29 (13) 1722-1727
  • 17 Zhang N, Lou W, Ji F, Qiu L, Tsang BK, Di W. Low molecular weight heparin and cancer survival: clinical trials and experimental mechanisms. J Cancer Res Clin Oncol 2016; 142 (08) 1807-1816
  • 18 Adams GN, Sharma BK, Rosenfeldt L. , et al. Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J Thromb Haemost 2018; 16 (11) 2258-2269
  • 19 Borensztajn K, Bijlsma MF, Reitsma PH, Peppelenbosch MP, Spek CA. Coagulation factor Xa inhibits cancer cell migration via protease-activated receptor-1 activation. Thromb Res 2009; 124 (02) 219-225
  • 20 Mantha S, Laube E, Miao Y. , et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. J Thromb Thrombolysis 2017; 43 (02) 166-171
  • 21 Ravikumar R, Lim CS, Davies AH. The role of new oral anticoagulants (NOACs) in cancer patients. Adv Exp Med Biol 2017; 906: 137-148
  • 22 Yu JL, May L, Lhotak V. , et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105 (04) 1734-1741
  • 23 Yu JL, May L, Klement P, Weitz JI, Rak J. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30 (01) 21-30
  • 24 Milsom C, Magnus N, Meehan B, Al-Nedawi K, Garnier D, Rak J. Tissue factor and cancer stem cells: is there a linkage?. Arterioscler Thromb Vasc Biol 2009; 29 (12) 2005-2014
  • 25 Magnus N, Garnier D, Meehan B. , et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 2014; 111 (09) 3544-3549
  • 26 Milsom CC, Yu JL, Mackman N. , et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68 (24) 10068-10076
  • 27 Magnus N, Meehan B, Garnier D. , et al. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis. Biochem Biophys Res Commun 2014; 454 (02) 262-268
  • 28 Ruf W. Tissue factor and cancer. Thromb Res 2012; 130 (Suppl. 01) S84-S87
  • 29 Versteeg HH, Schaffner F, Kerver M. , et al. Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice. Cancer Res 2008; 68 (17) 7219-7227
  • 30 Sun L, Li PB, Yao YF. , et al. Proteinase-activated receptor 2 promotes tumor cell proliferation and metastasis by inducing epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol 2018; 24 (10) 1120-1133
  • 31 Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003; 9 (04) 458-462
  • 32 Ünlü B, Bogdanov VY, Versteeg HH. Interplay between alternatively spliced tissue factor and full length tissue factor in modulating coagulant activity of endothelial cells. Thromb Res 2017; 156: 1-7
  • 33 Unruh D, Turner K, Srinivasan R. , et al. Alternatively spliced tissue factor contributes to tumor spread and activation of coagulation in pancreatic ductal adenocarcinoma. Int J Cancer 2014; 134 (01) 9-20
  • 34 van den Berg YW, van den Hengel LG, Myers HR. , et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 2009; 106 (46) 19497-19502
  • 35 Kocatürk B, Tieken C, Vreeken D. , et al. Alternatively spliced tissue factor synergizes with the estrogen receptor pathway in promoting breast cancer progression. J Thromb Haemost 2015; 13 (09) 1683-1693
  • 36 Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (09) 906-918
  • 37 Carney DH, Cunningham DD. Role of specific cell surface receptors in thrombin-stimulated cell division. Cell 1978; 15 (04) 1341-1349
  • 38 Grand RJ, Turnell AS, Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J 1996; 313 (Pt 2): 353-368
  • 39 Klepfish A, Greco MA, Karpatkin S. Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. Int J Cancer 1993; 53 (06) 978-982
  • 40 McNamara CA, Sarembock IJ, Gimple LW, Fenton II JW, Coughlin SR, Owens GK. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 1993; 91 (01) 94-98
  • 41 Nierodzik ML, Kajumo F, Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Res 1992; 52 (12) 3267-3272
  • 42 Nierodzik ML, Plotkin A, Kajumo F, Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Invest 1991; 87 (01) 229-236
  • 43 Sugama Y, Tiruppathi C, offakidevi K, Andersen TT, Fenton II JW, Malik AB. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol 1992; 119 (04) 935-944
  • 44 Toothill VJ, Van Mourik JA, Niewenhuis HK, Metzelaar MJ, Pearson JD. Characterization of the enhanced adhesion of neutrophil leukocytes to thrombin-stimulated endothelial cells. J Immunol 1990; 145 (01) 283-291
  • 45 Horowitz NA, Blevins EA, Miller WM. , et al. Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood 2011; 118 (10) 2889-2895
  • 46 Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 2002; 62 (23) 6966-6972
  • 47 Palumbo JS, Talmage KE, Massari JV. , et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110 (01) 133-141
  • 48 Palumbo JS, Talmage KE, Massari JV. , et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105 (01) 178-185
  • 49 Adams GN, Rosenfeldt L, Frederick M. , et al. Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res 2015; 75 (19) 4235-4243
  • 50 DeFeo K, Hayes C, Chernick M, Ryn JV, Gilmour SK. Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biol Ther 2010; 10 (10) 1001-1008
  • 51 Hu L, Ibrahim S, Liu C, Skaar J, Pagano M, Karpatkin S. Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res 2009; 69 (08) 3374-3381
  • 52 Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004; 104 (09) 2746-2751
  • 53 Nieman MT, LaRusch G, Fang C, Zhou Y, Schmaier AH. Oral thrombostatin FM19 inhibits prostate cancer. Thromb Haemost 2010; 104 (05) 1044-1048
  • 54 Schulze EB, Hedley BD, Goodale D. , et al. The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Res Treat 2008; 112 (02) 243-254
  • 55 Turpin B, Miller W, Rosenfeldt L. , et al. Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Res 2014; 74 (11) 3020-3030
  • 56 Huang YQ, Li JJ, Karpatkin S. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J Biol Chem 2000; 275 (09) 6462-6468
  • 57 Derian CK, Santulli RJ, Tomko KA, Haertlein BJ, Andrade-Gordon P. Species differences in platelet responses to thrombin and SFLLRN. receptor-mediated calcium mobilization and aggregation, and regulation by protein kinases. Thromb Res 1995; 78 (06) 505-519
  • 58 Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol Rev 2001; 53 (02) 245-282
  • 59 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 2015; 34 (04) 775-796
  • 60 Bar-Shavit R, Turm H, Salah Z. , et al. PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. IUBMB Life 2011; 63 (06) 397-402
  • 61 Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 2003; 162 (05) 1503-1513
  • 62 Fazzini A, D'Antongiovanni V, Giusti L. , et al. Altered protease-activated receptor-1 expression and signaling in a malignant pleural mesothelioma cell line, NCI-H28, with homozygous deletion of the β-catenin gene. PLoS One 2014; 9 (11) e111550
  • 63 Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2004; 2 (07) 395-402
  • 64 Tellez C, Bar-Eli M. Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 2003; 22 (20) 3130-3137
  • 65 Yang E, Boire A, Agarwal A. , et al. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 2009; 69 (15) 6223-6231
  • 66 Di Serio C, Pellerito S, Duarte M. , et al. Protease-activated receptor 1-selective antagonist SCH79797 inhibits cell proliferation and induces apoptosis by a protease-activated receptor 1-independent mechanism. Basic Clin Pharmacol Toxicol 2007; 101 (01) 63-69
  • 67 Cisowski J, O'Callaghan K, Kuliopulos A. , et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol 2011; 179 (01) 513-523
  • 68 Cohen I, Maoz M, Turm H. , et al. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1) in breast cancer invasion: signaling partners, hierarchy and physiological significance. PLoS One 2010; 5 (06) e11135
  • 69 Kancharla A, Maoz M, Jaber M. , et al. PH motifs in PAR1&2 endow breast cancer growth. Nat Commun 2015; 6: 8853
  • 70 Queiroz KC, Shi K, Duitman J. , et al. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135 (10) 2294-2304
  • 71 Villares GJ, Zigler M, Dobroff AS. , et al. Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype. Proc Natl Acad Sci U S A 2011; 108 (02) 626-631
  • 72 Villares GJ, Zigler M, Wang H. , et al. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res 2008; 68 (21) 9078-9086
  • 73 Yin YJ, Salah Z, Maoz M. , et al. Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. FASEB J 2003; 17 (02) 163-174
  • 74 Auvergne R, Wu C, Connell A. , et al. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo. Oncogene 2016; 35 (29) 3817-3828
  • 75 Tekin C, Shi K, Daalhuisen JB, Ten Brink MS, Bijlsma MF, Spek CA. PAR1 signaling on tumor cells limits tumor growth by maintaining a mesenchymal phenotype in pancreatic cancer. Oncotarget 2018; 9 (62) 32010-32023
  • 76 Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014; 5: 67
  • 77 Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 2012; 120 (26) 5237-5246
  • 78 Sinha RK, Wang Y, Zhao Z. , et al. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood 2018; 131 (11) 1163-1171
  • 79 Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 2015; 5: 678
  • 80 Jenne CN, Kubes P. Platelets in inflammation and infection. Platelets 2015; 26 (04) 286-292
  • 81 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?. Cancer Metastasis Rev 2017; 36 (02) 305-329
  • 82 Cho MS, Noh K, Haemmerle M. , et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 2017; 130 (10) 1235-1242
  • 83 Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68 (16) 6851-6858
  • 84 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
  • 85 Dejana E, Languino LR, Polentarutti N. , et al. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest 1985; 75 (01) 11-18
  • 86 Thompson WD, Harvey JA, Kazmi MA, Stout AJ. Fibrinolysis and angiogenesis in wound healing. J Pathol 1991; 165 (04) 311-318
  • 87 Palumbo JS, Kombrinck KW, Drew AF. , et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000; 96 (10) 3302-3309
  • 88 Steinbrecher KA, Horowitz NA, Blevins EA. , et al. Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 2010; 70 (07) 2634-2643
  • 89 Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133 (06) 511-520
  • 90 Byrnes JR, Wilson C, Boutelle AM. , et al. The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Blood 2016; 128 (15) 1969-1978
  • 91 Andersson C, Kvist PH, McElhinney K. , et al. Factor XIII transglutaminase supports the resolution of mucosal damage in experimental colitis. PLoS One 2015; 10 (06) e0128113
  • 92 Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138 (06) 2101-2114.e5
  • 93 Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 2013; 11 (02) 223-233
  • 94 Palumbo JS. Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. Semin Thromb Hemost 2008; 34 (02) 154-160
  • 95 Tieken C, Verboom MC, Ruf W. , et al. Tissue factor associates with survival and regulates tumour progression in osteosarcoma. Thromb Haemost 2016; 115 (05) 1025-1033
  • 96 Gil-Bernabé AM, Lucotti S, Muschel RJ. Coagulation and metastasis: what does the experimental literature tell us?. Br J Haematol 2013; 162 (04) 433-441
  • 97 Schaffner F, Yokota N, Ruf W. Tissue factor proangiogenic signaling in cancer progression. Thromb Res 2012; 129 (Suppl. 01) S127-S131
  • 98 van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 2012; 119 (04) 924-932
  • 99 Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8 (63) 107334-107345
  • 100 Pawar NR, Buzza MS, Antalis TM. Membrane-anchored serine proteases and protease-activated receptor-2-mediated signaling: co-conspirators in cancer progression. Cancer Res 2019; 79 (02) 301-310
  • 101 Ungefroren H, Witte D, Rauch BH. , et al. Proteinase-activated receptor 2 may drive cancer progression by facilitating TGF-β signaling. Int J Mol Sci 2017; 18 (11) E2494
  • 102 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2016; 35 (02) 213-233
  • 103 Wai PY, Kuo PC. The role of osteopontin in tumor metastasis. J Surg Res 2004; 121 (02) 228-241
  • 104 Palumbo JS, Barney KA, Blevins EA. , et al. Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost 2008; 6 (05) 812-819
  • 105 Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 2004; 104 (02) 397-401
  • 106 Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009; 69 (19) 7775-7783
  • 107 Placke T, Kopp HG, Salih HR. Modulation of natural killer cell anti-tumor reactivity by platelets. J Innate Immun 2011; 3 (04) 374-382
  • 108 Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59 (06) 1295-1300
  • 109 Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014; 111 (30) E3053-E3061
  • 110 Chiang SP, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol 2016; 311 (01) C1-C14
  • 111 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (05) 576-590
  • 112 Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2 (12) 1091-1099
  • 113 Porrello A, Leslie PL, Harrison EB. , et al. Factor XIIIA-expressing inflammatory monocytes promote lung squamous cancer through fibrin cross-linking. Nat Commun 2018; 9 (01) 1988
  • 114 Bagoly Z, Katona E, Muszbek L. Factor XIII and inflammatory cells. Thromb Res 2012; 129 (Suppl. 02) S77-S81
  • 115 Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011; 91 (03) 931-972
  • 116 Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19 (11) 1423-1437
  • 117 Griesmann H, Drexel C, Milosevic N. , et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut 2017; 66 (07) 1278-1285
  • 118 Ding L, Liang G, Yao Z. , et al. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget 2015; 6 (34) 36441-36455
  • 119 Spiegel A, Brooks MW, Houshyar S. , et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 2016; 6 (06) 630-649