Subscribe to RSS
DOI: 10.1055/s-0039-1695768
Tie2 Activation Promotes Protection and Reconstitution of the Endothelial Glycocalyx in Human Sepsis
Publication History
22 May 2019
05 July 2019
Publication Date:
07 September 2019 (online)
Abstract
The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal surface of the endothelium, provides a first vasoprotective barrier against vascular leakage in sepsis. We hypothesized that angiopoietin-2 (Angpt-2), antagonist of the endothelium-stabilizing receptor Tie2, induces a rapid loss of the eGC in human sepsis. Using intravital microscopy, we measured the perfused boundary region (PBR), an inverse parameter of eGC dimensions in sublingual microvessels, in patients with sepsis and age-matched nonseptic subjects. Median PBR values were significantly higher in patients compared with controls and correlated with serum Angpt-2 levels. To transfer and further explore these findings in a cell culture system, we exposed endothelial cells (ECs) to serum (5%) from a subgroup of septic patients and nonseptic controls. Confocal and atomic force microscopy revealed that sepsis serum, but not control serum, induced thinning of the eGC on human ECs in vitro, which correlated with paired PBR values obtained in vivo (r = 0.96, p < 0.01). Inhibition of Angpt-2 or Tie2 activation completely abolished eGC damage. Mechanistically, sepsis-induced eGC breakdown required the loss of its main constituent heparan sulfate; a result of heparan sulfate-specific enzyme heparanase, which was suppressed by Tie2 activation. Finally, Tie2 activation, but not Angpt-2 inhibition, initiated after septic or enzymatic damage provoked rapid refurbishment of the eGC. Our data indicate that eGC breakdown in human sepsis is mediated via Tie2 deactivation by Angpt-2. Activation of Tie2 seems to accelerate recovery of the eGC and might hold promise as a therapeutic target in human sepsis.
Keywords
endothelial glycocalyx - perfused boundary region - intravital microscopy - sidestream dark field microscopy - sepsis - intensive care unit - Tie2 - angiopoietin - Vasculotide - glycosaminoglycans* Both the authors contributed equally and are considered last authors.
-
References
- 1 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
- 2 Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014; 69 (07) 777-784
- 3 Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40 (04) 828-839
- 4 Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87 (02) 198-210
- 5 Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol 1896; 19 (04) 312-326
- 6 Rehm M, Haller M, Orth V. , et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 2001; 95 (04) 849-856
- 7 Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 2002; 283 (04) H1282 –H1291
- 8 Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23 (01) 16
- 9 Schmidt EP, Yang Y, Janssen WJ. , et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18 (08) 1217-1223
- 10 Lukasz A, Hillgruber C, Oberleithner H. , et al. Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 2017; 113 (06) 671-680
- 11 Gamble JR, Drew J, Trezise L. , et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 2000; 87 (07) 603-607
- 12 Thurston G, Rudge JS, Ioffe E. , et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6 (04) 460-463
- 13 Ghosh CC, David S, Zhang R. , et al. Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc Natl Acad Sci U S A 2016; 113 (09) 2472-2477
- 14 Davis S, Aldrich TH, Jones PF. , et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87 (07) 1161-1169
- 15 Fiedler U, Scharpfenecker M, Koidl S. , et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004; 103 (11) 4150-4156
- 16 Fiedler U, Reiss Y, Scharpfenecker M. , et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12 (02) 235-239
- 17 Parikh SM, Mammoto T, Schultz A. , et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3 (03) e46
- 18 David S, Mukherjee A, Ghosh CC. , et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. Crit Care Med 2012; 40 (11) 3034-3041
- 19 Kümpers P, Lukasz A, David S. , et al. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 2008; 12 (06) R147
- 20 Lukasz A, Hellpap J, Horn R. , et al. Circulating angiopoietin-1 and angiopoietin-2 in critically ill patients: development and clinical application of two new immunoassays. Crit Care 2008; 12 (04) R94
- 21 Singer M, Deutschman CS, Seymour CW. , et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
- 22 Quan H, Li B, Couris CM. , et al. Updating and validating the Charlson Comorbidity Index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011; 173 (06) 676-682
- 23 Rovas A, Lukasz AH, Vink H. , et al. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit - the GlycoNurse study. Scand J Trauma Resusc Emerg Med 2018; 26 (01) 16
- 24 Van Slyke P, Alami J, Martin D. , et al. Acceleration of diabetic wound healing by an angiopoietin peptide mimetic. Tissue Eng Part A 2009; 15 (06) 1269-1280
- 25 Kumpers P, Gueler F, David S. , et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 2011; 15 (05) R261
- 26 Oliner J, Min H, Leal J. , et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 2004; 6 (05) 507-516
- 27 Wiesinger A, Peters W, Chappell D. , et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013; 8 (11) e80905
- 28 Sun X, Li L, Overdier KH. , et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal Chem 2015; 87 (12) 6220-6227
- 29 Rübig E, Stypmann J, Van Slyke P. , et al. The synthetic Tie2 agonist peptide vasculotide protects renal vascular barrier function in experimental acute kidney injury. Sci Rep 2016; 6: 22111
- 30 Sugiyama MG, Armstrong SM, Wang C. , et al. The Tie2-agonist Vasculotide rescues mice from influenza virus infection. Sci Rep 2015; 5: 11030
- 31 David S, Ghosh CC, Kümpers P. , et al. Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 2011; 300 (06) L851 –L862
- 32 Hakanpaa L, Sipila T, Leppanen VM. , et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun 2015; 6: 5962
- 33 Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30 (06) 623-627
- 34 Anand D, Ray S, Srivastava LM, Bhargava S. Evolution of serum hyaluronan and syndecan levels in prognosis of sepsis patients. Clin Biochem 2016; 49 (10-11): 768-776
- 35 Schmidt EP, Overdier KH, Sun X. , et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med 2016; 194 (04) 439-449
- 36 Song JW, Zullo JA, Liveris D, Dragovich M, Zhang XF, Goligorsky MS. Therapeutic restoration of endothelial glycocalyx in sepsis. J Pharmacol Exp Ther 2017; 361 (01) 115-121
- 37 Yang Y, Haeger SM, Suflita MA. , et al. Fibroblast growth factor signaling mediates pulmonary endothelial glycocalyx reconstitution. Am J Respir Cell Mol Biol 2017; 56 (06) 727-737
- 38 Gurnik S, Devraj K, Macas J. , et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 2016; 131 (05) 753-773
- 39 Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 2009; 83 (01) 24-33
- 40 Han S, Lee SJ, Kim KE. , et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016; 8 (335) 335ra55
- 41 Margraf A, Herter JM, Kühne K. , et al. 6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice. Crit Care 2018; 22 (01) 111
- 42 Donati A, Damiani E, Domizi R. , et al. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res 2013; 90: 86-89
- 43 Koning NJ, Vonk AB, Vink H, Boer C. Side-by-side alterations in glycocalyx thickness and perfused microvascular density during acute microcirculatory alterations in cardiac surgery. Microcirculation 2016; 23 (01) 69-74
- 44 Higgins SJ, De Ceunynck K, Kellum JA. , et al. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest 2018; 128 (04) 1471-1484
- 45 Benest AV, Kruse K, Savant S. , et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS One 2013; 8 (08) e70459