Subscribe to RSS
DOI: 10.1055/s-0039-1697617
The Pathogenesis of Primary Biliary Cholangitis: A Comprehensive Review
Publication History
Publication Date:
19 September 2019 (online)
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by autoimmune destruction of small to medium size intrahepatic bile ducts. The etiology of PBC remains unknown and pathogenesis features immune-mediated biliary injury, alongside the consequences of chronic cholestasis. PBC is strongly associated with the loss of immune tolerance against mitochondrial antigens and the subsequent presence of an articulated immunologic response that involves both humoral and cellular responses. Both environmental factors and genetic variants increase PBC susceptibility. Biliary epithelial cells have often been considered a passive target of the immune attack in PBC; however, cholangiocyte dedifferentiation, senescence, stress, and deoxyribonucleic acid damage have been recognized to play an active role in the pathogenesis of PBC. This review highlights and discusses the most relevant pathogenetic mechanisms in PBC, focusing on the key factors that lead to the onset of cholestasis and immune activation.
-
References
- 1 Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353 (12) 1261-1273
- 2 Invernizzi P. Future directions in genetic for autoimmune diseases. J Autoimmun 2009; 33 (01) 1-2
- 3 Chung BK, Guevel BT, Reynolds GM. , et al. Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis. J Autoimmun 2017; 77: 45-54
- 4 Gershwin ME, Mackay IR. The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 2008; 47 (02) 737-745
- 5 Invernizzi P, Gershwin ME. Primary biliary cirrhosis: bad genes, bad luck. Dig Dis Sci 2012; 57 (03) 599-601
- 6 Cordell HJ, Han Y, Mells GF. , et al; Canadian-US PBC Consortium; Italian PBC Genetics Study Group; UK-PBC Consortium. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun 2015; 6: 8019
- 7 Dong M, Li J, Tang R. , et al. Multiple genetic variants associated with primary biliary cirrhosis in a Han Chinese population. Clin Rev Allergy Immunol 2015; 48 (2-3): 316-321
- 8 Hirschfield GM, Liu X, Han Y. , et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 2010; 42 (08) 655-657
- 9 Hitomi Y, Ueno K, Kawai Y. , et al. POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep 2019; 9 (01) 102
- 10 Kar SP, Seldin MF, Chen W. , et al; Italian PBC Genetics Study Group. Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. Genes Immun 2013; 14 (03) 179-186
- 11 Selmi C, Cavaciocchi F, Lleo A. , et al. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol 2014; 5: 128
- 12 Bowlus CL, Yang GX, Liu CH. , et al. Therapeutic trials of biologics in primary biliary cholangitis: an open label study of abatacept and review of the literature. J Autoimmun 2019; 101: 26-34
- 13 Floreani A, Franceschet I, Perini L, Cazzagon N, Gershwin ME, Bowlus CL. New therapies for primary biliary cirrhosis. Clin Rev Allergy Immunol 2015; 48 (2-3): 263-272
- 14 Hirschfield GM, Dyson JK, Alexander GJM. , et al. The British Society of Gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines. Gut 2018; 67 (09) 1568-1594
- 15 Hirschfield GM, Gershwin ME, Strauss R. , et al; PURIFI Study Group. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: a proof-of-concept study. Hepatology 2016; 64 (01) 189-199
- 16 Hu YB, Liu XY, Zhan W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis. Drug Des Devel Ther 2018; 12: 2213-2221
- 17 Mayo MJ, Wigg AJ, Leggett BA. , et al. NGM282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Commun 2018; 2 (09) 1037-1050
- 18 Slijepcevic D, Roscam Abbing RLP, Fuchs CD. , et al. Na+ -taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice. Hepatology 2018; 68: 1057-1069
- 19 He XS, Gershwin ME, Ansari AA. Checkpoint-based immunotherapy for autoimmune diseases - opportunities and challenges. J Autoimmun 2017; 79: 1-3
- 20 Tanaka A, Leung PSC, Gershwin ME. Evolution of our understanding of PBC. Best Pract Res Clin Gastroenterol 2018; 34-35: 3-9
- 21 Kanno N, LeSage G, Glaser S, Alvaro D, Alpini G. Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 2000; 31 (03) 555-561
- 22 Ludwig J. New concepts in biliary cirrhosis. Semin Liver Dis 1987; 7 (04) 293-301
- 23 Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G. Functional heterogeneity of cholangiocytes. Semin Liver Dis 2002; 22 (03) 227-240
- 24 Glaser S, Francis H, Demorrow S. , et al. Heterogeneity of the intrahepatic biliary epithelium. World J Gastroenterol 2006; 12 (22) 3523-3536
- 25 Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 2010; 52 (04) 1489-1496
- 26 Kanno N, LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2001; 281 (03) G612-G625
- 27 Martínez-Ansó E, Castillo JE, Díez J, Medina JF, Prieto J. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology 1994; 19 (06) 1400-1406
- 28 Banales JM, Arenas F, Rodríguez-Ortigosa CM. , et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology 2006; 43 (02) 266-275
- 29 Strazzabosco M, Mennone A, Boyer JL. Intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 1991; 87 (05) 1503-1512
- 30 Medina JF, , Martínez-Ansó, Vazquez JJ, Prieto J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 1997; 25 (01) 12-17
- 31 Melero S, Spirlì C, Zsembery A. , et al. Defective regulation of cholangiocyte Cl-/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 2002; 35 (06) 1513-1521
- 32 Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol 2012; 28 (03) 253-257
- 33 Hohenester S, Wenniger LM, Paulusma CC. , et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012; 55 (01) 173-183
- 34 Salas JT, Banales JM, Sarvide S. , et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 2008; 134 (05) 1482-1493
- 35 Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol 2015; 62 (1, Suppl) S25-S37
- 36 Banales JM, Sáez E, Uriz M. , et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012; 56 (02) 687-697
- 37 Erice O, Munoz-Garrido P, Vaquero J. , et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 2018; 67 (04) 1420-1440
- 38 Liu R, Li X, Zhu W. , et al. Cholangiocyte-derived exosomal LncRNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology 2019;
- 39 Brown WR, Kloppel TM. The liver and IgA: immunological, cell biological and clinical implications. Hepatology 1989; 9 (05) 763-784
- 40 Woof JM, Mestecky J. Mucosal immunoglobulins. Immunol Rev 2005; 206: 64-82
- 41 Tomana M, Kulhavy R, Mestecky J. Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 1988; 94 (03) 762-770
- 42 Matsumura S, Van De Water J, Leung P. , et al. Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology 2004; 39 (05) 1415-1422
- 43 Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 2006; 59 (02) 184-190
- 44 Ballardini G, Mirakian R, Bianchi FB, Pisi E, Doniach D, Bottazzo GF. Aberrant expression of HLA-DR antigens on bileduct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancet 1984; 2 (8410): 1009-1013
- 45 Saidman SL, Duquesnoy RJ, Zeevi A, Fung JJ, Starzl TE, Demetris AJ. Recognition of major histocompatibility complex antigens on cultured human biliary epithelial cells by alloreactive lymphocytes. Hepatology 1991; 13 (02) 239-246
- 46 Ichiki Y, Selmi C, Shimoda S, Ishibashi H, Gordon SC, Gershwin ME. Mitochondrial antigens as targets of cellular and humoral auto-immunity in primary biliary cirrhosis. Clin Rev Allergy Immunol 2005; 28 (02) 83-91
- 47 Yokomori H, Oda M, Ogi M. , et al. Expression of adhesion molecules on mature cholangiocytes in canal of Hering and bile ductules in wedge biopsy samples of primary biliary cirrhosis. World J Gastroenterol 2005; 11 (28) 4382-4389
- 48 Fava G, Glaser S, Francis H, Alpini G. The immunophysiology of biliary epithelium. Semin Liver Dis 2005; 25 (03) 251-264
- 49 Ayres RC, Neuberger JM, Shaw J, Joplin R, Adams DH. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 1993; 34 (09) 1245-1249
- 50 Tsuneyama K, Harada K, Yasoshima M, Kaji K, Gershwin ME, Nakanuma Y. Expression of co-stimulatory factor B7-2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: an immunohistochemical study. J Pathol 1998; 186 (02) 126-130
- 51 Takeda K, Kojima Y, Ikejima K. , et al. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 2008; 105 (31) 10895-10900
- 52 Syal G, Fausther M, Dranoff JA. Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol 2012; 303 (10) G1077-G1086
- 53 Leon MP, Kirby JA, Gibbs P, Burt AD, Bassendine MF. Immunogenicity of biliary epithelial cells: study of the expression of B7 molecules. J Hepatol 1995; 22 (05) 591-595
- 54 Morita M, Watanabe Y, Akaike T. Inflammatory cytokines up-regulate intercellular adhesion molecule-1 expression on primary cultured mouse hepatocytes and T-lymphocyte adhesion. Hepatology 1994; 19 (02) 426-431
- 55 Leon MP, Bassendine MF, Wilson JL, Ali S, Thick M, Kirby JA. Immunogenicity of biliary epithelium: investigation of antigen presentation to CD4+ T cells. Hepatology 1996; 24 (03) 561-567
- 56 Cruickshank SM, Southgate J, Selby PJ, Trejdosiewicz LK. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro. J Hepatol 1998; 29 (04) 550-558
- 57 Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 2010; 34 (01) 45-54
- 58 Reynoso-Paz S, Coppel RL, Mackay IR, Bass NM, Ansari AA, Gershwin ME. The immunobiology of bile and biliary epithelium. Hepatology 1999; 30 (02) 351-357
- 59 Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 2009; 157 (02) 261-270
- 60 Lan RY, Salunga TL, Tsuneyama K. , et al. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 2009; 32 (01) 43-51
- 61 Yang CY, Ma X, Tsuneyama K. , et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014; 59 (05) 1944-1953
- 62 Ramaswamy M, Deng M, Siegel RM. Harnessing programmed cell death as a therapeutic strategy in rheumatic diseases. Nat Rev Rheumatol 2011; 7 (03) 152-160
- 63 Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 2010; 140 (05) 619-630
- 64 Cristoferi L, Nardi A, Ronca V, Invernizzi P, Mells G, Carbone M. Prognostic models in primary biliary cholangitis. J Autoimmun 2018; 95: 171-178
- 65 Curran CS, Gupta S, Sanz I, Sharon E. PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun 2019; 97: 1-9
- 66 Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425 (6957): 516-521
- 67 Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 1997; 26 (06) 1399-1405
- 68 Harada K, Kono N, Tsuneyama K, Nakanuma Y. Cell-kinetic study of proliferating bile ductules in various hepatobiliary diseases. Liver 1998; 18 (04) 277-284
- 69 Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y. Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis. J Hepatol 2001; 34 (04) 500-506
- 70 Tinmouth J, Lee M, Wanless IR, Tsui FW, Inman R, Heathcote EJ. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver 2002; 22 (03) 228-234
- 71 McDaniel K, Meng F, Wu N. , et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice. Hepatology 2017; 65 (02) 544-559
- 72 Huang Q, Chu S, Yin X. , et al. Interleukin-17A-induced epithelial-mesenchymal transition of human intrahepatic biliary epithelial cells: implications for primary biliary cirrhosis. Tohoku J Exp Med 2016; 240 (04) 269-275
- 73 Sasaki M, Yoshimura-Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol 2015; 50 (09) 984-995
- 74 Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 2008; 48 (01) 186-195
- 75 Afonso MB, Rodrigues PM, Simão AL. , et al. Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 2016; 7 (09) e2390
- 76 Sasaki M, Nakanuma Y. Bile acids and deregulated cholangiocyte autophagy in primary biliary cholangitis. Dig Dis 2017; 35 (03) 210-216
- 77 Lleo A, Gershwin ME, Mantovani A, Invernizzi P. Towards common denominators in primary biliary cirrhosis: the role of IL-12. J Hepatol 2012; 56 (03) 731-733
- 78 Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, Rosen A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001; 108 (02) 223-232
- 79 Lleo A, Selmi C, Invernizzi P. , et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009; 49 (03) 871-879
- 80 Rong G, Zhong R, Lleo A. , et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 2011; 54 (01) 196-203
- 81 Lleo A, Bowlus CL, Yang GX. , et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52 (03) 987-998
- 82 Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 2016; 66: 60-75
- 83 Rojas M, Restrepo-Jiménez P, Monsalve DM. , et al. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95: 100-123
- 84 Tanaka A, Leung PS, Gershwin ME. Environmental basis of primary biliary cholangitis. Exp Biol Med (Maywood) 2018; 243 (02) 184-189
- 85 Tanaka A, Leung PSC, Gershwin ME. The genetics and epigenetics of primary biliary cholangitis. Clin Liver Dis 2018; 22 (03) 443-455
- 86 Kara S, Pirela-Morillo GA, Gilliam CT, Wilson GD. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks. J Autoimmun 2019; 97: 48-58
- 87 Selmi C, Mayo MJ, Bach N. , et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127 (02) 485-492
- 88 Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 2012; 56 (05) 1181-1188
- 89 Invernizzi P, Ransom M, Raychaudhuri S. , et al; Italian PBC Genetics Study Group. Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes Immun 2012; 13 (06) 461-468
- 90 Liu JZ, Almarri MA, Gaffney DJ. , et al; UK Primary Biliary Cirrhosis (PBC) Consortium; Wellcome Trust Case Control Consortium 3. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 2012; 44 (10) 1137-1141
- 91 Hirschfield GM, Liu X, Xu C. , et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009; 360 (24) 2544-2555
- 92 Nakamura M, Nishida N, Kawashima M. , et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 2012; 91 (04) 721-728
- 93 Qiu F, Tang R, Zuo X. , et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun 2017; 8: 14828
- 94 Liu X, Invernizzi P, Lu Y. , et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42 (08) 658-660
- 95 Mells GF, Floyd JA, Morley KI. , et al; UK PBC Consortium; Wellcome Trust Case Control Consortium 3. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43 (04) 329-332
- 96 Wang C, Zheng X, Jiang P. , et al. Genome-wide association studies of specific antinuclear autoantibody subphenotypes in primary biliary cholangitis. Hepatology 2019; 70 (01) 294-307
- 97 Recalde G, Moreno-Sosa T, Yúdica F. , et al. Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun Rev 2018; 17 (05) 504-512
- 98 Selmi C, De Santis M, Cavaciocchi F, Gershwin ME. Infectious agents and xenobiotics in the etiology of primary biliary cirrhosis. Dis Markers 2010; 29 (06) 287-299
- 99 Burroughs AK, Rosenstein IJ, Epstein O, Hamilton-Miller JM, Brumfitt W, Sherlock S. Bacteriuria and primary biliary cirrhosis. Gut 1984; 25 (02) 133-137
- 100 Corpechot C, Chrétien Y, Chazouillères O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010; 53 (01) 162-169
- 101 Floreani A, Bassendine MF, Mitchison H, Freeman R, James OF. No specific association between primary biliary cirrhosis and bacteriuria?. J Hepatol 1989; 8 (02) 201-207
- 102 Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the united states. Hepatology 2001; 33 (01) 16-21
- 103 Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 2010; 59 (04) 508-512
- 104 Leung PS, Park O, Matsumura S, Ansari AA, Coppel RL, Gershwin ME. Is there a relation between Chlamydia infection and primary biliary cirrhosis?. Clin Dev Immunol 2003; 10 (2-4): 227-233
- 105 Liu HY, Deng AM, Zhang J. , et al. Correlation of Chlamydia pneumoniae infection with primary biliary cirrhosis. World J Gastroenterol 2005; 11 (26) 4108-4110
- 106 Selmi C, Balkwill DL, Invernizzi P. , et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 2003; 38 (05) 1250-1257
- 107 Mattner J, Savage PB, Leung P. , et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3 (05) 304-315
- 108 Wang JJ, Yang GX, Zhang WC. , et al. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol 2014; 175 (02) 192-201
- 109 Xu L, Sakalian M, Shen Z, Loss G, Neuberger J, Mason A. Cloning the human betaretrovirus proviral genome from patients with primary biliary cirrhosis. Hepatology 2004; 39 (01) 151-156
- 110 Xu L, Shen Z, Guo L. , et al. Does a betaretrovirus infection trigger primary biliary cirrhosis?. Proc Natl Acad Sci U S A 2003; 100 (14) 8454-8459
- 111 Selmi C, Ross SR, Ansari AA. , et al. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis. Gastroenterology 2004; 127 (02) 493-501
- 112 Tang R, Wei Y, Li Y. , et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018; 67 (03) 534-541
- 113 Probert PM, Leitch AC, Dunn MP. , et al. Identification of a xenobiotic as a potential environmental trigger in primary biliary cholangitis. J Hepatol 2018; 69 (05) 1123-1135
- 114 Lleo A, Zhang W, Zhao M. , et al; PBC Epigenetic Study Group. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin Epigenetics 2015; 7: 61
- 115 Lacotte S, Brun S, Muller S, Dumortier H. CXCR3, inflammation, and autoimmune diseases. Ann N Y Acad Sci 2009; 1173: 310-317
- 116 Chuang YH, Lian ZX, Cheng CM. , et al. Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J Autoimmun 2005; 25 (02) 126-132
- 117 Lleo A, Liao J, Invernizzi P. , et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 2012; 55 (01) 153-160
- 118 Arenas F, Hervias I, Saez E. , et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC. JHEP Reports 2019 ; In press
- 119 Concepcion AR, Salas JT, Sarvide S. , et al. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses. Eur J Immunol 2014; 44 (05) 1341-1351
- 120 Hu Z, Huang Y, Liu Y. , et al. β-Arrestin 1 modulates functions of autoimmune T cells from primary biliary cirrhosis patients. J Clin Immunol 2011; 31 (03) 346-355
- 121 Padgett KA, Lan RY, Leung PC. , et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 2009; 32 (3-4): 246-253
- 122 Tan Y, Pan T, Ye Y. , et al. Serum microRNAs as potential biomarkers of primary biliary cirrhosis. PLoS One 2014; 9 (10) e111424
- 123 Nakagawa R, Muroyama R, Saeki C. , et al. miR-425 regulates inflammatory cytokine production in CD4+ T cells via N-Ras upregulation in primary biliary cholangitis. J Hepatol 2017; 66 (06) 1223-1230
- 124 Gerussi A, Cristoferi L, Carbone M, Asselta R, Invernizzi P. The immunobiology of female predominance in primary biliary cholangitis. J Autoimmun 2018; 95: 124-132
- 125 Gershwin ME, Selmi C, Worman HJ. , et al; USA PBC Epidemiology Group. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005; 42 (05) 1194-1202
- 126 Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun 2018; 92: 12-34
- 127 Tanaka A, Lindor K, Gish R. , et al. Fetal microchimerism alone does not contribute to the induction of primary biliary cirrhosis. Hepatology 1999; 30 (04) 833-838
- 128 Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 2009; 33 (01) 12-16
- 129 Prothero KE, Stahl JM, Carrel L. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res 2009; 17 (05) 637-648
- 130 Tukiainen T, Villani AC, Yen A. , et al; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group; Statistical Methods groups—Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site—NDRI; Biospecimen Collection Source Site—RPCI; Biospecimen Core Resource—VARI; Brain Bank Repository—University of Miami Brain Endowment Bank; Leidos Biomedical—Project Management; ELSI Study; Genome Browser Data Integration &Visualization—EBI; Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz. Landscape of X chromosome inactivation across human tissues. Nature 2017; 550 (7675): 244-248
- 131 Invernizzi P, Miozzo M, Battezzati PM. , et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 2004; 363 (9408): 533-535
- 132 Miozzo M, Selmi C, Gentilin B. , et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology 2007; 46 (02) 456-462
- 133 Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2019; 69 (01) 394-419
- 134 European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017; 67: 145-172
- 135 Sultan K, Petkar M, Derbala M. Florid biliary duct lesions in an AMA -positive patient in absence of cholestatic liver biochemistry. J Autoimmun 2019; 101: 153-155
- 136 Sun C, Xiao X, Yan L. , et al. Histologically proven AMA positive primary biliary cholangitis but normal serum alkaline phosphatase: Is alkaline phosphatase truly a surrogate marker?. J Autoimmun 2019; 99: 33-38
- 137 Dubel L, Tanaka A, Leung PS. , et al. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology 1999; 29 (04) 1013-1018
- 138 Leung PS, Chuang DT, Wynn RM. , et al. Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a conformational epitope. Hepatology 1995; 22 (02) 505-513
- 139 Leung PS, Iwayama T, Prindiville T. , et al. Use of designer recombinant mitochondrial antigens in the diagnosis of primary biliary cirrhosis. Hepatology 1992; 15 (03) 367-372
- 140 Van de Water J, Fregeau D, Davis P. , et al. Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function. J Immunol 1988; 141 (07) 2321-2324
- 141 Coppel RL, McNeilage LJ, Surh CD. , et al. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Proc Natl Acad Sci U S A 1988; 85 (19) 7317-7321
- 142 Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 1987; 138 (10) 3525-3531
- 143 Gulamhusein AF, Juran BD, Lazaridis KN. Genome-wide association studies in primary biliary cirrhosis. Semin Liver Dis 2015; 35 (04) 392-401
- 144 Van de Water J, Gershwin ME, Leung P, Ansari A, Coppel RL. The autoepitope of the 74-kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. J Exp Med 1988; 167 (06) 1791-1799
- 145 Benson GD, Kikuchi K, Miyakawa H, Tanaka A, Watnik MR, Gershwin ME. Serial analysis of antimitochondrial antibody in patients with primary biliary cirrhosis. Clin Dev Immunol 2004; 11 (02) 129-133
- 146 Moteki S, Leung PS, Coppel RL. , et al. Use of a designer triple expression hybrid clone for three different lipoyl domain for the detection of antimitochondrial autoantibodies. Hepatology 1996; 24 (01) 97-103
- 147 Moteki S, Leung PS, Dickson ER. , et al. Epitope mapping and reactivity of autoantibodies to the E2 component of 2-oxoglutarate dehydrogenase complex in primary biliary cirrhosis using recombinant 2-oxoglutarate dehydrogenase complex. Hepatology 1996; 23 (03) 436-444
- 148 Leung PS, Coppel RL, Gershwin ME. Etiology of primary biliary cirrhosis: the search for the culprit. Semin Liver Dis 2005; 25 (03) 327-336
- 149 Oertelt S, Rieger R, Selmi C. , et al. A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology 2007; 45 (03) 659-665
- 150 Tanaka A, Nezu S, Uegaki S. , et al. The clinical significance of IgA antimitochondrial antibodies in sera and saliva in primary biliary cirrhosis. Ann N Y Acad Sci 2007; 1107: 259-270
- 151 Amano K, Leung PS, Rieger R. , et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 2005; 174 (09) 5874-5883
- 152 Long SA, Quan C, Van de Water J. , et al. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 2001; 167 (05) 2956-2963
- 153 Rieger R, Leung PS, Jeddeloh MR. , et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun 2006; 27 (01) 7-16
- 154 Shuai Z, Wang J, Badamagunta M. , et al. The fingerprint of antimitochondrial antibodies and the etiology of primary biliary cholangitis. Hepatology 2017; 65 (05) 1670-1682
- 155 Wakabayashi K, Lian ZX, Leung PS. , et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48 (02) 531-540
- 156 Wakabayashi K, Yoshida K, Leung PS. , et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009; 155 (03) 577-586
- 157 Kita H, Matsumura S, He XS. , et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109 (09) 1231-1240
- 158 Kita H, Naidenko OV, Kronenberg M. , et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002; 123 (04) 1031-1043
- 159 Shimoda S, Van de Water J, Ansari A. , et al. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 1998; 102 (10) 1831-1840
- 160 Kita H, Lian ZX, Van de Water J. , et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002; 195 (01) 113-123
- 161 Luger D, Silver PB, Tang J. , et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 2008; 205 (04) 799-810
- 162 Lan RY, Cheng C, Lian ZX. , et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006; 43 (04) 729-737
- 163 Liaskou E, Patel SR, Webb G. , et al. Increased sensitivity of Treg cells from patients with PBC to low dose IL-12 drives their differentiation into IFN-γ secreting cells. J Autoimmun 2018; 94: 143-155
- 164 Mao TK, Lian ZX, Selmi C. , et al. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology 2005; 42 (04) 802-808
- 165 Chuang YH, Lian ZX, Tsuneyama K. , et al. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 2006; 26 (04) 232-240
- 166 Shimoda S, Harada K, Niiro H. , et al. Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells. Hepatology 2008; 47 (03) 958-965
- 167 Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun 2017; 83: 1-11
- 168 Shimoda S, Hisamoto S, Harada K. , et al. Natural killer cells regulate T cell immune responses in primary biliary cirrhosis. Hepatology 2015; 62 (06) 1817-1827
- 169 Afford SC, Ahmed-Choudhury J, Randhawa S. , et al. CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 2001; 15 (13) 2345-2354
- 170 Tang XZ, Jo J, Tan AT. , et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 2013; 190 (07) 3142-3152
- 171 Jiang X, Lian M, Li Y. , et al. The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: regulation by cholic acid-induced interleukin-7. J Autoimmun 2018; 90: 64-75
- 172 Tanaka A, Leung PSC, Young HA, Gershwin ME. Therapeutic and immunological interventions in primary biliary cholangitis: from mouse models to humans. Arch Med Sci 2018; 14 (04) 930-940
- 173 Wang J, Yang GX, Tsuneyama K, Gershwin ME, Ridgway WM, Leung PS. Animal models of primary biliary cirrhosis. Semin Liver Dis 2014; 34 (03) 285-296
- 174 Koarada S, Wu Y, Fertig N. , et al. Genetic control of autoimmunity: protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol 2004; 173 (04) 2315-2323
- 175 Irie J, Wu Y, Wicker LS. , et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006; 203 (05) 1209-1219
- 176 Moritoki Y, Tsuda M, Tsuneyama K. , et al. B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cell Immunol 2011; 268 (01) 16-23
- 177 Oertelt S, Lian ZX, Cheng CM. , et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 2006; 177 (03) 1655-1660
- 178 Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99-146
- 179 Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12 (02) 171-181
- 180 Ueno Y, Ambrosini YM, Moritoki Y, Ridgway WM, Gershwin ME. Murine models of autoimmune cholangitis. Curr Opin Gastroenterol 2010; 26 (03) 274-279
- 181 Yang GX, Lian ZX, Chuang YH. , et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 2008; 47 (06) 1974-1982
- 182 Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005; 201 (07) 1061-1067
- 183 Ma HD, Zhao ZB, Ma WT. , et al. Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun 2018; 95: 47-57
- 184 Lan RY, Selmi C, Gershwin ME. The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 2008; 31 (01) 7-12
- 185 Wakabayashi K, Lian ZX, Moritoki Y. , et al. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 2006; 44 (05) 1240-1249
- 186 Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3 (04) 521-530
- 187 Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology 1993; 105 (02) 572-578
- 188 Surh CD, Coppel R, Gershwin ME. Structural requirement for autoreactivity on human pyruvate dehydrogenase-E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope. J Immunol 1990; 144 (09) 3367-3374
- 189 Leung PS, Quan C, Park O. , et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003; 170 (10) 5326-5332
- 190 Leung PS, Park O, Tsuneyama K. , et al. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J Immunol 2007; 179 (04) 2651-2657
- 191 Bae HR, Leung PS, Tsuneyama K. , et al. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 2016; 64 (04) 1189-1201
- 192 Bae HR, Hodge DL, Yang GX. , et al. The interplay of type I and type II interferons in murine autoimmune cholangitis as a basis for sex-biased autoimmunity. Hepatology 2018; 67 (04) 1408-1419
- 193 Watt FE, James OF, Jones DE. Patterns of autoimmunity in primary biliary cirrhosis patients and their families: a population-based cohort study. QJM 2004; 97 (07) 397-406
- 194 Gershwin ME, Van de Water J. Cholangiocytes and primary biliary cirrhosis: prediction and predication. J Clin Invest 2001; 108 (02) 187-188
- 195 Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis. Clin Exp Immunol 2019; 195 (01) 25-34
- 196 Allina J, Hu B, Sullivan DM. , et al. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2006; 27 (04) 232-241
- 197 Baert L, Manfroi B, Casez O, Sturm N, Huard B. The role of APRIL - a proliferation inducing ligand - In autoimmune diseases and expectations from its targeting. J Autoimmun 2018; 95: 179-190
- 198 Lleo A, Maroni L, Glaser S, Alpini G, Marzioni M. Role of cholangiocytes in primary biliary cirrhosis. Semin Liver Dis 2014; 34 (03) 273-284
- 199 Chen XM, O'Hara SP, Nelson JB. , et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 2005; 175 (11) 7447-7456
- 200 Nakamura M, Funami K, Komori A. , et al. Increased expression of Toll-like receptor 3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatol Int 2008; 2 (02) 222-230
- 201 Harada K, Isse K, Sato Y, Ozaki S, Nakanuma Y. Endotoxin tolerance in human intrahepatic biliary epithelial cells is induced by upregulation of IRAK-M. Liver Int 2006; 26 (08) 935-942
- 202 Kobayashi K, Hernandez LD, Galán JE, Janeway Jr CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110 (02) 191-202
- 203 Harada K, Sato Y, Itatsu K. , et al. Innate immune response to double-stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia. Hepatology 2007; 46 (04) 1146-1154
- 204 Matsumoto K, Fujii H, Michalopoulos G, Fung JJ, Demetris AJ. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro. Hepatology 1994; 20 (02) 376-382
- 205 Harada K, Ohba K, Ozaki S. , et al. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 2004; 40 (04) 925-932
- 206 Isse K, Harada K, Zen Y. , et al. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology 2005; 41 (03) 506-516
- 207 Tsuneyama K, Van de Water J, Leung PS. , et al. Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression. Hepatology 1995; 21 (04) 1031-1037
- 208 Juran BD, Hirschfield GM, Invernizzi P. , et al; Italian PBC Genetics Study Group. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 2012; 21 (23) 5209-5221
- 209 Mitchell MM, Lleo A, Zammataro L. , et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011; 6 (01) 95-102
- 210 Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner KH. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest 2009; 119 (06) 1537-1545
- 211 Fu S, Fei Q, Jiang H. , et al. Involvement of histone acetylation of Sox17 and Foxa2 promoters during mouse definitive endoderm differentiation revealed by microRNA profiling. PLoS One 2011; 6 (11) e27965
- 212 McDaniel K, Meng F, Wu N. , et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice. Hepatology 2017; 65 (02) 544-559
- 213 Sawalha AH. Epigenetics and T-cell immunity. Autoimmunity 2008; 41 (04) 245-252
- 214 Lal G, Zhang N, van der Touw W. , et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182 (01) 259-273
- 215 Kont V, Murumägi A, Tykocinski LO. , et al. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues. Mol Immunol 2011; 49 (03) 518-526
- 216 Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012; 338 (6113): 1435-1439
- 217 Ricaño-Ponce I, Wijmenga C. Mapping of immune-mediated disease genes. Annu Rev Genomics Hum Genet 2013; 14: 325-353
- 218 Ninomiya M, Kondo Y, Funayama R. , et al. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One 2013; 8 (06) e66086
- 219 Sander S, Bullinger L, Klapproth K. , et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112 (10) 4202-4212