J Neurol Surg A Cent Eur Neurosurg 2020; 81(02): 138-146
DOI: 10.1055/s-0040-1701625
Original Article
Georg Thieme Verlag KG Stuttgart · New York

When Right Is on the Left (and Vice Versa): A Case Series of Glioma Patients with Reversed Lateralization of Cognitive Functions

Emmanuel Mandonnet
1   Department of Neurosurgery, Lariboisière Hospital, Paris, France
2   University Paris 7, Paris, France
3   Frontlab, INSERM, Institut du Cerveau et de la Moelle (ICM), Paris, France
,
Charles Mellerio
4   Imaging center Centre Cardiologique du Nord (CCN), Saint-Denis, France
,
Marion Barberis
1   Department of Neurosurgery, Lariboisière Hospital, Paris, France
,
Isabelle Poisson
1   Department of Neurosurgery, Lariboisière Hospital, Paris, France
,
Johan Martijn Jansma
5   Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
,
Geert-Jan Rutten
5   Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
› Author Affiliations
Further Information

Publication History

11 December 2018

22 October 2019

Publication Date:
17 February 2020 (online)

Abstract

We report a case series of four patients operated on for a glioma in awake conditions and in whom task-based functional magnetic resonance imaging (fMRI) demonstrated right-dominant activity during a language production task. Language functional sites were identified intraoperatively by electrical stimulations only in the patient with a right-sided lesion. Furthermore, the pre- or postoperative cognitive evaluations in the three patients operated on for a left-sided glioma revealed right spatial neglect and dysexecutive syndrome, hence demonstrating that, in patients with right-dominant activity on language fMRI, the left hemisphere is implicated in spatial consciousness and cognitive control. This study supports the interest of presurgical task-based language fMRI to identify patients with a reversed lateralization of cognitive functions and to make an adequate selection of the battery of intraoperative cognitive tasks to be monitored in those rare outliers.

 
  • References

  • 1 Silva MA, See AP, Essayed WI, Golby AJ, Tie Y. Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 2017; 17: 794-803
  • 2 Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for surgery of gliomas. Curr Treat Options Neurol 2017; 19 (10) 34
  • 3 Conti Nibali M, Rossi M, Sciortino T. , et al. Preoperative surgical planning of glioma. Limitations and reliability of fMRI and DTI tractography. J Neurosurg Sci 2019; 63 (02) 127-134
  • 4 Southwell DG, Birk HS, Han SJ, Li J, Sall JW, Berger MS. Resection of gliomas deemed inoperable by neurosurgeons based on preoperative imaging studies. J Neurosurg 2018; 129 (03) 567-575
  • 5 Giussani C, Roux F-E, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010; 66 (01) 113-120
  • 6 Kuchcinski G, Mellerio C, Pallud J. , et al. Three-Tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology 2015; 84 (06) 560-568
  • 7 Rutten GJM, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CWM. FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 2002; 17 (01) 447-460
  • 8 Binder JR. Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 2011; 20 (02) 214-222
  • 9 Janecek JK, Swanson SJ, Sabsevitz DS. , et al. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 2013; 54 (02) 314-322
  • 10 Janecek JK, Swanson SJ, Sabsevitz DS. , et al. Naming outcome prediction in patients with discordant Wada and fMRI language lateralization. Epilepsy Behav 2013; 27 (02) 399-403
  • 11 Binder JR, Rao SM, Hammeke TA. , et al. Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 1995; 52 (06) 593-601
  • 12 Tzourio-Mazoyer N, Landeau B, Papathanassiou D. , et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15 (01) 273-289
  • 13 Gualtieri CT, Johnson LG. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch Clin Neuropsychol 2006; 21 (07) 623-643
  • 14 Rijnen SJM, Meskal I, Emons WHM. , et al. Evaluation of normative data of a widely used computerized neuropsychological battery: applicability and effects of sociodemographic variables in a Dutch sample. Assessment 2017 ;September 1 (Epub ahead of print)
  • 15 van Loenen IS, Rijnen SJM, Bruijn J, Rutten GM, Gehring K, Sitskoorn MM. Group changes in cognitive performance after surgery mask changes in individual patients with glioblastoma. World Neurosurg 2018; 117: e172-e179
  • 16 Mandonnet E, De Witt Hamer P, Poisson I. , et al. Initial experience using awake surgery for glioma: oncological, functional, and employment outcomes in a consecutive series of 25 cases. Neurosurgery 2015; 76 (04) 382-389 ; discussion 389
  • 17 Metz-Lutz M, Kremin H, Deloche G, Hannequin D, Ferrand L, Perrier D. Standardisation d'un test de dénomination orale: Contrôle des effets de l'âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Rev Neuropsychol 1991; 1: 73-95
  • 18 Godefroy O, Azouvi P, Robert P, Roussel M, LeGall D, Meulemans T. ; Groupe de Réflexion sur l'Evaluation des Fonctions Exécutives Study Group. Dysexecutive syndrome: diagnostic criteria and validation study. Ann Neurol 2010; 68 (06) 855-864
  • 19 Howard H, Patterson K. The Pyramidal and Palm Tree Test. Bury-St-Edmunds, UK: Themes Valley Test Company; 1992
  • 20 Rey A. L'examen psychologique dans les cas d'encéphalopathie traumatique. Arch Psychol 1941; 28: 328-336
  • 21 Grober E, Buschke H, Crystal H, Bang S, Dresner R. Screening for dementia by memory testing. Neurology 1988; 38 (06) 900-903
  • 22 Barbeau E, Didic M, Tramoni E. , et al. Evaluation of visual recognition memory in MCI patients. Neurology 2004; 62 (08) 1317-1322
  • 23 Brickenkamp R. Test D2: Aufmerksamkeits-Belastungs-Test (Test D2: Concentration-Endurance Test: Manual). Gottingen, Germany: Verlag fur Psychologie; 1981
  • 24 Thiebaut de Schotten M, Urbanski M, Duffau H. , et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 2005; 309 (5744): 2226-2228
  • 25 Stroop J. Studies of interference in serial verbal reactions. J Exp Psychol 1935; 6: 643-662
  • 26 Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 1977; 44 (02) 367-373
  • 27 Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 2001; 42 (02) 241-251
  • 28 Coppens P, Hungerford S, Yamaguchi S, Yamadori A. Crossed aphasia: an analysis of the symptoms, their frequency, and a comparison with left-hemisphere aphasia symptomatology. Brain Lang 2002; 83 (03) 425-463
  • 29 Dronkers NF, Knight RT. Right-sided neglect in a left-hander: evidence for reversed hemispheric specialization of attention capacity. Neuropsychologia 1989; 27 (05) 729-735
  • 30 Maeshima S, Shigeno K, Dohi N, Kajiwara T, Komai N. A study of right unilateral spatial neglect in left hemispheric lesions: the difference between right-handed and non-right-handed post-stroke patients. Acta Neurol Scand 1992; 85 (06) 418-424
  • 31 Padovani A, Pantano P, Frontoni M, Iacoboni M, Di Piero V, Lenzi GL. Reversed laterality of cerebral functions in a non-right-hander: neuropsychological and spect findings in a case of ‘atypical’ dominance. Neuropsychologia 1992; 30 (01) 81-89
  • 32 Fujimori M, Wakisaka K, Yamadori A. , et al. Crossed non-dominant hemisphere syndrome in a right-hander. Behav Neurol 1994; 7 (03) 123-126
  • 33 Marchetti C, Carey D, Della Sala S. Crossed right hemisphere syndrome following left thalamic stroke. J Neurol 2005; 252 (04) 403-411
  • 34 Matute E, Ardila A, Rosselli M. , et al. Crossed-brain representation of verbal and nonverbal functions. Case Rep Neurol Med 2015; 2015: 301297
  • 35 Cai Q, Van der Haegen L, Brysbaert M. Complementary hemispheric specialization for language production and visuospatial attention. Proc Natl Acad Sci U S A 2013; 110 (04) E322-E330
  • 36 Fischer RS, Alexander MP, Gabriel C, Gould E, Milione J. Reversed lateralization of cognitive functions in right handers. Exceptions to classical aphasiology. Brain 1991; 114 (Pt 1A): 245-261
  • 37 Mandonnet E, Cerliani L, Siuda-Krzywicka K. , et al. A network-level approach of cognitive flexibility impairment after surgery of a right temporo-parietal glioma. Neurochirurgie 2017; 63 (04) 308-313
  • 38 Mazoyer B, Zago L, Jobard G. , et al. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLOS One 2014; 9 (06) e101165