Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(03): 489-497
DOI: 10.1055/s-0040-1705952
DOI: 10.1055/s-0040-1705952
short review
Recent Advances in Photoacid Catalysis for Organic Synthesis
The authors are grateful to the College of Arts and Sciences and the Department of Chemistry and Biochemistry at Seton Hall University for financial support. This work was supported by the Sloan Scholars Mentoring Network of the Social Science Research Council with funds provided by the Alfred P. Sloan Foundation. Z.M.S. is thankful to the New Jersey Space Grant Consortium (NJSGC) and NASA for support.
Abstract
Photoacids are molecules that become more acidic upon the absorption of light. This short review highlights recent advances in the use of photoacids as catalysts for organic synthesis. Photoacid-catalyzed transformations discussed herein include: Protonation, glycosylation, acetalization, and arylation reactions.
1 Introduction
2 Protonation: Excited-State Proton Transfer (ESPT)
3 Glycosylation
4 Acetalization
5 Friedel–Crafts Arylation
6 Additional C–C and C–S Bond-Forming Reactions
7 Conclusion
Key words
photoacid catalysis - photochemistry - light-activation - in situ acid generation - excited-state proton transfer (ESPT) catalysisPublication History
Received: 01 August 2020
Accepted after revision: 25 August 2020
Article published online:
19 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 1b Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 1c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 1d Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 2a Shirai M, Tsunooka M. Prog. Polym. Sci. 1996; 21: 1
- 2b Fu C, Xu J, Boyer C. Chem. Commun. 2016; 52: 7126
- 2c Patel PK, Arias JE, Gongora RS, Hernandez FE, Moncomble A, Aloise S, Chumbimuni-Torres KY. Phys. Chem. Chem. Phys. 2018; 20: 26804
- 2d Kagel H, Frohme M, Glökler J. J. Cell. Biotechnol. 2018; 4: 23
- 3 Förster T. Naturwissenschaften 1949; 36: 186
- 4 Weller A. Naturwissenschaften 1955; 42: 175
- 5a Ireland JF, Wyatt PA. H. Adv. Phys. Org. Chem. 1976; 12: 131
- 5b Arnaut LG, Formosinho SJ. J. Photochem. Photobiol., A 1993; 75: 1
- 5c Shizuka H. Acc. Chem. Res. 1985; 18: 141
- 5d Tolbert LM, Solntsev KM. Acc. Chem. Res. 2002; 35: 19
- 5e Liao Y. Acc. Chem. Res. 2017; 50: 1956
- 5f Martin CJ, Rapenne G, Nakashima T, Kawai T. J. Photochem. Photobiol., C 2018; 34: 41
- 5g Zivic N, Kuroishi PK, Dumur F, Gigmes D, Dove AP, Sardon H. Angew. Chem. Int. Ed. 2019; 58: 10410
- 5h Kuznetsova NA, Malkov GV, Gribov BG. Russ. Chem. Rev. 2020; 89: 173
- 6 Tolbert LM, Haubrich JE. J. Am. Chem. Soc. 1994; 116: 10593
- 7 Weller AZ. Z. Elektrochem. 1960; 64: 55
- 8a Acharya A, Chaudhuri S, Batista VS. J. Chem. Theory Comput. 2018; 14: 867
- 8b Wang Y.-F, Cheng Y.-C. Phys. Chem. Chem. Phys. 2018; 20: 4351
- 9a Mohr JT, Hong AY, Stoltz BM. Nat. Chem. 2009; 1: 359
- 9b Oudeyer S, Brière J.-F, Levacher V. Eur. J. Org. Chem. 2014; 6103
- 10 Das A, Banerjee T, Hanson K. Chem. Commun. 2016; 52: 1350
- 11a McClure DS. J. Chem. Phys. 1949; 17: 665
- 11b McClure DS, Blake NW, Hanst PL. J. Chem. Phys. 1954; 22: 255
- 12a Das A, Ayad S, Hanson K. Org. Lett. 2016; 18: 5416
- 12b Posey V, Hanson K. ChemPhotoChem 2019; 3: 580
- 13 Solntsev KM, Bartolo E.-A, Pan G, Muller G, Bommireddy S, Huppert D, Tolbert LM. Isr. J. Chem. 2009; 49: 227
- 14 Ayad S, Posey V, Das A, Montgomery JM, Hanson K. Chem. Commun. 2019; 55: 1263
- 15a Sangwan R, Mandal PK. RSC Adv. 2017; 7: 26256
- 15b Nielsen MM, Pedersen CM. Chem. Rev. 2018; 118: 8285
- 15c Kulkarni SS, Wang C.-C, Sabbavarapu NM, Podilapu AR, Liao P.-H, Hung S.-C. Chem. Rev. 2018; 118: 8025
- 16 Iwata R, Uda K, Takahashi D, Toshima K. Chem. Commun. 2014; 50: 10695
- 17 Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190
- 18a Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 18b Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 18c Nagorny P, Sun Z. Beilstein J. Org. Chem. 2016; 12: 2834
- 19 Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2012; 14: 1724
- 20 This shift in acidity is based on glucosyl trichloroacetimidate activation, which requires a pKa value of ≤ 5 at room temperature.
- 21 Liu J, Yin S, Wang H, Li H, Ni G. Carbohydr. Res. 2020; 490: 107963
- 22 Zhao G, Wang T. Angew. Chem. Int. Ed. 2018; 57: 6120
- 23 Wang T, Li J, Zhao G. Synlett 2020; 31: 823
- 24 Yan D.-M, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 378
- 25 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
- 26 Iibuchi N, Eto T, Aoyagi M, Kurinami R, Sakai H, Hasobe T, Takahashi D, Toshima K. Org. Biomol. Chem. 2020; 18: 851
- 27a Nishikubo Y, Kanzaki S, Matsumura S, Toshima K. Tetrahedron Lett. 2006; 47: 8125
- 27b Dharpure PD, Bhowmick A, Warghude PK, Bhat RG. Tetrahedron Lett. 2020; 61: 151407
- 28 Yi H, Niu L, Wang S, Liu T, Singh AK, Lei A. Org. Lett. 2017; 19: 122
- 29 Zhou Q, Jia T, Li X.-X, Zhou L, Li C.-J, Feng Y.-S. Synth. Commun. 2018; 48: 1068
- 30 Spiliopoulou N, Nikitas NF, Kokotos CG. Green Chem. 2020; 22: 3539
- 31 de Lijser HJ. P, Rangel NA. J. Org. Chem. 2004; 69: 8315
- 32 Yu L, Lin C, Liao C, Zeng X, Chen X, Zhu Z, Huang Y, Li Y, Chen L. Environ. Chem. Lett. 2020; 18: 1353
- 33a Devdutt C, Nabin CB. Curr. Org. Synth. 2012; 9: 17
- 33b Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
- 33c Brahmachari G. RSC Adv. 2016; 6: 64676
- 33d Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 34 Salem ZM, Saway J, Badillo JJ. Org. Lett. 2019; 21: 8528
- 35 Strada A, Fredditori M, Zanoni G, Protti S. Molecules 2019; 24: 1318
Reviews on photocatalysis:
Reviews on photoacids:
Computational studies on photoacidity:
Reviews on catalytic protonation strategies:
Reviews on glycosylation:
Reviews on hydrogen bond donor catalysis:
Reviews on C–C bond formation: