Subscribe to RSS
DOI: 10.1055/s-0040-1706003
Forskolin Editing via Radical Iodo- and Hydroalkylation
This work was funded by the Swiss National Science Foundation: project IZ73Z0_152346/1 (SCOPES program involving VK and PR) and project 200020_172621 (PR). EP and VG were both partly supported by the State Secretariat for Education and Innovation (SERI) via a Swiss Government Excellence Scholarships for Foreign Scholars and Artists.
Abstract
The modification of highly oxygenated forskolin as well as manoyl and epi-manoyl oxide, two less functionalized model substrates sharing the same polycyclic skeleton, via intermolecular carbon-centered radical addition to the vinyl moiety has been investigated. Highly regio- and reasonably stereoselective iodine atom transfer radical addition (ATRA) reactions were developed. Unprotected forskolin afforded an unexpected cyclic ether derivative. Protection of the 1,3-diol as an acetonide led the formation of the iodine ATRA product. Interestingly, by changing the mode of initiation of the radical process, in situ protection of the forskolin 1,3-diol moiety as a cyclic boronic ester took place during the iodine ATRA process without disruption of the radical chain process. This very mild radical-mediated in situ protection of 1,3-diol is expected to be of interest for a broad range of radical and non-radical transformations. Finally, by using our recently developed tert-butylcatechol-mediated hydroalkylation procedure, highly efficient preparation of forskolin derivatives bearing an extra ester or sulfone group was achieved.
Key words
radical reaction - natural product modification - alkenes - boronic ester - 1,3-diol protecting group - triethylboraneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706003.
- Supporting Information
Publication History
Received: 01 November 2020
Accepted after revision: 30 November 2020
Article published online:
11 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Alasbahi RH, Melzig MF. Planta Med. 2010; 76: 653
- 2 Bhat SV, Bajqwa BS, Dornauer H, de Souza NJ, Fehlhaber HW. Tetrahedron Lett. 1977; 18: 1669
- 3 Shah V, Bhat SV, Bajwa BS, Dornauer H, de Souza NJ. Planta Med. 1980; 39: 183
- 4 Vishwakarma RA, Tyagi BR, Ahmed B, Husain A. Planta Med. 1988; 54: 471
- 5a Jha S, Bandyopadhyay M, Chaudhuri KN, Ghosh S, Ghosh B. Plant Genet. Resour. 2005; 3: 101
- 5b Reddy CS, Praveena C, Veeresham C. Int. J. Pharm. Sci. Nanotech. 2012; 5: 1720
- 6 Nadukeri S, Kattimani KN, Kolakar SS. Int. J. Agric. Sci. 2014; 10: 119
- 7 Choudhary AK, Upadhayaya SD, Sharma A, Raidas DK. J. Pharmacogn. Phytochem. 2019; 8: 686
- 8 Singh P, Suryanarayana MA. Indian J. Pharm. Sci. 2019; 81: 1136
- 9a Seamon KB, Daly JW. Trends Pharmacol. Sci. 1983; 4: 120
- 9b Forte LR. Arch. Biochem. Biophys. 1983; 225: 898
- 9c Sengupta S, Mehta G. Org. Biomol. Chem. 2018; 16: 6372
- 10 Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. Pharmacol. Rev. 2017; 69: 93
- 11 Salehi B, Staniak M, Czopek K, Stępień A, Dua K, Wadhwa R, Chellappan DK, Sytar O, Brestic M, Bhat NG, Kumar NV. A, Contreras M. dM, Sharopov F, Cho WC, Sharifi-Rad J. Appl. Sci. 2019; 9: 4089
- 12a Follin-Arbelet V, Misund K, Naderi EH, Ugland H, Sundan A, Kiil Blomhoff H. Sci. Rep. 2015; 5: 13001
- 12b Quinn SN, Graves SH, Dains-McGahee C, Friedman EM, Hassan H, Witkowski P, Sabbatini ME. Mol. Carcinog. 2017; 56: 1344
- 12c Sapio L, Gallo M, Illiano M, Chiosi E, Naviglio D, Spina A, Naviglio S. J. Cell. Physiol. 2017; 232: 922
- 12d Illiano M, Sapio L, Salzillo A, Capasso L, Caiafa I, Chiosi E, Spina A, Naviglio S. Biochem. Pharmacol. 2018; 152: 104
- 12e Wang H, Lou C, Ma N. Cancer Manage. Res. 2019; 11: 1685
- 12f Shen L, Yuan F, Hong Y, Xu M, Hu Y, Liu Y. J. Mol. Cell Biol. 2020; 12: 245
- 13 Colombo MI, Zinczuk J, Rúveda EA. Tetrahedron 1992; 48: 963
- 14 Hylse O, Maier L, Kučera R, Perečko T, Svobodová A, Kubala L, Paruch K, Švenda J. Angew. Chem. Int. Ed. 2017; 56: 12586
- 15 Hashimoto T, Horie M, Toyota M, Taira Z, Takeda R, Tori M, Asakawa Y. Tetrahedron Lett. 1994; 35: 5457
- 16 Hagiwara H, Takeuchi F, Kudou M, Hoshi T, Suzuki T, Hashimoto T, Asakawa Y. J. Org. Chem. 2006; 71: 4619
- 17 Koteswara Reddy M, Santosh Kumar K, Sreenivas P, Krupadanam GL. D, Janardhan Reddy K. Tetrahedron Lett. 2011; 52: 6537
- 18 Appel NM, Robbins JD, de Souza EB, Seamon KB. J. Pharmacol. Exp. Ther. 1992; 263: 1415
- 19 Egger M, Maity P, Hübner M, Seifert R, König B. Eur. J. Org. Chem. 2009; 2009: 3613
- 20 Costa DC. S. Arab. J. Chem. 2020; 13: 799
- 21 Burra S, Voora V, Rao CP, Vijay Kumar P, Kancha RK, Krupadanam GL. D. Bioorg. Med. Chem. Lett. 2017; 27: 4314
- 22 Orphanos D, Filer CN. Appl. Radiat. Isot. 2016; 107: 203
- 23 Delpech B, Lett R. Tetrahedron Lett. 1987; 28: 4061
- 24 Robles O, Serna-Saldívar SO, Gutiérrez-Uribe JA, Romo D. Org. Lett. 2012; 14: 1394
- 25a Kharasch MS, Jensen EV, Urry WH. Science 1945; 102: 128
- 25b Kharasch MS, Urry WH, Jensen EV. J. Am. Chem. Soc. 1945; 67: 1626
- 25c Kharasch MS, Jensen EV, Urry WH. J. Am. Chem. Soc. 1946; 68: 154
- 25d Kharasch MS, Jensen EV, Urry WH. J. Am. Chem. Soc. 1947; 69: 1100
- 25e Kharasch MS, Reinmuth O, Urry WH. J. Am. Chem. Soc. 1947; 69: 1105
- 26 Kharasch MS, Skell PS, Fisher P. J. Am. Chem. Soc. 1948; 70: 1055
- 27 Curran DP. Iodine Atom Transfer Reactions in Organic Synthesis . In Free Radicals in Synthesis and Biology . Minisci F. NATO ASI Series (Series C; Mathematical and Physical Sciences) 260; Springer: Dordrecht: 1989: 37-51
- 28 Ollivier C, Bark T, Renaud P. Synthesis 2000; 1598
- 29a Tappin ND. C, Renaud P. Adv. Synth. Catal. 2020;
- 29b Byers J. Atom Transfer Reactions . In Radicals in Organic Synthesis, Vol. 1. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001: 72-89
- 30 Povie G, Suravarapu SR, Bircher MP, Mojzes MM, Rieder S, Renaud P. Sci. Adv. 2018; 4: eaat6031
- 31a Vlad PF, Ungur ND, Barba AN, Korchagina DV, Bagryanskaya IY, Gatilov YV, Gatilova VP, Barkhash VA. Chem. Nat. Compd. 1988; 24: 166
- 31b Alvarez-Manzaneda EJ, Chaboun R, Alvarez E, Cabrera E, Alvarez-Manzaneda R, Haidour A, Ramos JM. Synlett 2006; 1829
- 32 CCDC 2025764, 2025762, 2025760, and 2025765 contain the supplementary crystallographic data for compound (14S)-epi-11, (14R)-12, 13, and (14S)-14, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures.
- 33a Bhat SV, Bajwa BS, Dornauer H, de Souza NJ. Chem. Soc., Perkin Trans 1 1982; 767
- 33b Bhat SV, Dohadwalla AN, Bajwa BS, Dadkar NK, Dornauer H, de Souza NJ. J. Med. Chem. 1983; 26: 486
- 34a Kraus GA, Landgrebe K. Tetrahedron Lett. 1984; 25: 3939
- 34b Kraus GA, Landgrebe K. Tetrahedron 1985; 41: 4039
- 35a Yorimitsu H, Wakabayashi K, Shinokubo H, Oshima K. Tetrahedron Lett. 1999; 40: 519
- 35b Hideki Y, Katsuyu W, Hiroshi S, Koichiro O. Bull. Chem. Soc. Jpn. 2001; 74: 1963
- 36 Peralta-Hernández E, Cortezano-Arellano O, Cordero-Vargas A. Tetrahedron Lett. 2011; 52: 6899
- 37 León-Rayo DF, Morales-Chamorro M, Cordero-Vargas A. Eur. J. Org. Chem. 2016; 2016: 1739
- 38 The major ATRA adduct cyclizes significantly faster than the minor isomer. The cyclization via inversion of the stereocenter at the C–I bond was confirmed by the stereoselective cyclization of the minor isomer of 16 (isolated from another experiment) to the minor isomer of 12, as well as the comparison between the diastereomeric ratio obtained for the ATRA reaction leading to 16 and the formation of tetracyclic 12.
- 39a Someya H, Itoh T, Aoki S. Molecules 2017; 22: 1650
- 39b Nazari SH, Forson KG, Martinez EE, Hansen NJ, Gassaway KJ, Lyons NM, Kenney KC, Valdivia-Berroeta GA, Smith SJ, Michaelis DJ. Org. Lett. 2019; 21: 9589
- 39c Wein LA, Wurst K, Angyal P, Weisheit L, Magauer T. J. Am. Chem. Soc. 2019; 141: 19589
- 40 Shimada N, Urata S, Fukuhara K, Tsuneda T, Makino K. Org. Lett. 2018; 20: 6064
- 41 Churches QI, Hooper JF, Hutton CA. J. Org. Chem. 2015; 80: 5428
- 42 Bouvier J.-P, Jung G, Liu Z, Guérin B, Guindon Y. Org. Lett. 2001; 3: 1391
- 43a Medeiros MR, Schacherer LN, Spiegel DA, Wood JL. Org. Lett. 2007; 9: 4427
- 43b Davy JA, Mason JW, Moreau B, Wulff JE. J. Org. Chem. 2012; 77: 6332
- 44a Allais F, Boivin J, Nguyen VT. Beilstein J. Org. Chem. 2007; 3: 46
- 44b Jin J, Newcomb M. J. Org. Chem. 2007; 72: 5098
- 45 Jin J, Newcomb M. J. Org. Chem. 2008; 73: 4740
- 46 Povie G, Marzorati M, Bigler P, Renaud P. J. Org. Chem. 2013; 78: 1553
- 47a Porter NA, Giese B, Curran DP. Acc. Chem. Res. 1991; 24: 296
- 47b Curran DP, Porter NA, Giese B. Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications. VCH; Weinheim: 1996
- 48 Kogler H, Fehlhaber H.-W. Magn. Res. Chem. 1991; 29: 993
- 49a Suravarapu SR, Peter B, Renaud P. Sci. China Chem. 2019; 62: 1504
- 49b Giese B, Kopping B, Chatgilialoglu C. Tetrahedron Lett. 1989; 30: 681
- 49c Chatgilialoglu C. Acc. Chem. Res. 1992; 25: 188
- 49d Ryu I, Uehara S, Hirao H, Fukuyama T. Org. Lett. 2008; 10: 1005
- 50 Curran DP, Bosch E, Kaplan J, Newcomb M. J. Org. Chem. 1989; 54: 1826
- 51 Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
- 52 Povie G, Tran A.-T, Bonnaffé D, Habegger J, Hu Z, Le Narvor C, Renaud P. Angew. Chem. Int. Ed. 2014; 53: 3894
- 53 Koval’skaya SS, Kozlov NG, Kulcitki V, Aricu A, Ungur N. Russ. J. Org. Chem. 2013; 49: 303
- 54 Moulines J, Lamidey A.-M, Bats J.-P, Morisson V. Synth. Commun. 1993; 23: 2991
- 55 Lal B, Gidwani RM, Rupp RH. Synthesis 1989; 711