Subscribe to RSS
DOI: 10.1055/s-0040-1706040
Deuterium-Labeling Studies on the C–H/Olefin Coupling of Aromatic Ketones Catalyzed by Fe(PMe3)4
We acknowledge the financial support, in part, by JST CREST Grant Number JPMJCR20R1.
Abstract
Deuterium-labeling experiments were performed for the Fe(PMe3)4-catalyzed C–H/olefin coupling using a deuterium-labeled aromatic ketone with various alkenes. While the reactions with a variety of alkenes provided the linear alkylation products formed via 1,2-insertion of alkene into an Fe–H bond, the reversible 2,1-insertion proceeded during the reaction highly depends on the choice of the alkene. No H/D scrambling resulting from 2,1-insertion/β-elimination was detected for the reactions with a vinylsilane and N-vinylcarbazole, but the reactions with styrenes are considered to involve rapid 2,1-insertion/ β-elimination processes to cause significant levels of H/D scrambling.
Key words
C–H/olefin coupling - iron catalyst - deuterium-labeling experiments - mechanism - styreneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706040.
- Supporting Information
Publication History
Received: 30 March 2021
Accepted after revision: 27 April 2021
Article published online:
19 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
- 2a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 2b Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 2c Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
- 2d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 2e Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
- 2f Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 2g Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 2h Rasheed OK, Sun B. ChemistrySelect 2018; 3: 5689
- 2i Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
- 2j Higham JI, Bull JA. Org. Biomol. Chem. 2020; 18: 7291
- 2k Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
- 3a Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1995; 68: 62
- 3b Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
- 4a Lenges CP, Brookhart M. J. Am. Chem. Soc. 1999; 121: 6616
- 4b Jun C.-H, Moon CW, Hong J.-B, Lim S.-G, Chung K.-Y, Kim Y.-H. Chem. Eur. J. 2002; 8: 485
- 4c Grellier M, Vendier L, Chaudret B, Albinati A, Rizzato S, Mason S, Sabo-Etienne S. J. Am. Chem. Soc. 2005; 127: 17592
- 4d Martinez R, Chevalier R, Darses S, Genet J.-P. Angew. Chem. Int. Ed. 2006; 45: 8232
- 4e Tsuchikama K, Kasagawa M, Hashimoto Y, Endo K, Shibata T. J. Organomet. Chem. 2008; 693: 3939
- 4f Crisenza GE. M, McCreanor NG, Bower JF. J. Am. Chem. Soc. 2014; 136: 10258
- 4g Shirai T, Yamamoto Y. Angew. Chem. Int. Ed. 2015; 54: 9894
- 4h Xie S, Li S, Ma W, Xu X, Jin Z. Chem. Commun. 2019; 55: 12408
- 5a Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
- 5b Wong MY, Yamakawa T, Yoshikai N. Org. Lett. 2015; 17: 442
- 6a Kimura N, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2017; 139: 14849
- 6b Kimura N, Kochi T, Kakiuchi F. Asian J. Org. Chem. 2019; 8: 1115
- 6c Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2021; 143: 4543
- 7a Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 7b Cera G, Ackermann L. Top. Curr. Chem. 2016; 374: 57
- 7c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 7d Yoshikai N. Isr. J. Chem. 2017; 57: 1117
- 8a Bagga MM, Pauson PL, Preston FJ, Reed RI. J. Chem. Soc., Chem. Commun. 1965; 543
- 8b Hata G, Kondo H, Miyake A. J. Am. Chem. Soc. 1968; 90: 2278
- 8c Tolman CA, Ittel SD, English AD, Jesson JP. J. Am. Chem. Soc. 1979; 101: 1742
- 8d Baker MV, Field LD. J. Am. Chem. Soc. 1986; 108: 7433
- 8e Klein H.-F, Camadanli S, Beck R, Leukel D, Flörke U. Angew. Chem. Int. Ed. 2005; 44: 975
- 8f Camadanli S, Beck R, Flörke U, Klein H.-F. Organometallics 2009; 28: 2300
- 8g Beck R, Camadanli S, Flörke U, Klein H.-F. J. Organomet. Chem. 2015; 778: 47
- 8h Wang L, Sun H, Li X, Fuhr O, Fenske D. Dalton Trans. 2016; 45: 18133
- 9a Yu X, Zhao H, Li P, Koh MJ. J. Am. Chem. Soc. 2020; 142: 18223
- 9b Xu S, Liu G, Huang Z. Chin. J. Chem. 2021; 39: 585
- 10 Messinis AM, Finger LH, Hu L, Ackermann L. J. Am. Chem. Soc. 2020; 142: 13102
- 11a Zhang H, Zhu X, Wang M, Liu B.-M, Huang Y, Wang J. Transit. Met. Chem. 2019; 44: 545
- 11b Ren Q, An S, Wang Y, Tong W. Appl. Organomet. Chem. 2019; 33: e5183
-
12 The linear/branched product selectivity of the reaction with styrene was studied theoretically by Ren and co-workers, see ref 11b.
- 13 Bhattacharya P, Krause JA, Guan H. Organometallics 2011; 30: 7389
- 14 Coogan MP, Haigh R, Hall A, Harris LD, Hibbs DE, Jenkins RL, Jones CL, Tomkinson NC. O. Tetrahedron 2003; 59: 7389
Recent reviews on C–H functionalization:
Iron-catalyzed methylation of aromatic ketones with AlMe3:
Iron-catalyzed C–H/olefin coupling of imines was also reported:
Reviews on iron-catalyzed C–H functionalization:
Stoichiometric C–H bond cleavage by oxidative addition to low-valent iron complexes:
Recent reports on reactions proceeding via alkene insertion into Fe–H bonds: