Subscribe to RSS
DOI: 10.1055/s-0040-1706402
One-Pot Synthesis of γ-Azidobutyronitriles and Their Intramolecular Cycloadditions
Research related to the development of a one-pot synthetic approach to azidonitriles was supported by the Russian Science Foundation (19-73-00244). Research related to the development of synthetic procedures for converting azidonitriles into tetrazoles was supported by the Russian Foundation for Basic Research (18-53-41009), and by the Ministry of Innovative Development of the Republic of Uzbekistan (MRU-FA-74/2017).Publication History
Received: 19 May 2020
Accepted after revision: 22 June 2020
Publication Date:
04 August 2020 (online)
Abstract
Efficient gram-scale, one-pot approaches to azidocyanobutyrates and their amidated or decarboxylated derivatives have been developed, starting from commercially available aldehydes and cyanoacetates. These techniques combine (1) Knoevenagel condensation, (2) Corey–Chaykovsky cyclopropanation and (3) nucleophilic ring opening of donor-acceptor cyclopropanes with the azide ion, as well as (4) Krapcho decarboxylation or (4′) amidation. The synthetic utility of the resulting γ-azidonitriles was demonstrated by their transformation into tetrazoles via intramolecular (3+2)-cycloaddition. A condition-dependent activation effect of the α-substituent was revealed in that case. Thermally activated azide–nitrile interaction did not differentiate the presence of an α-electron-withdrawing substituent in γ-azidonitriles, whereas the Lewis acid mediated (SnCl4 or TiCl4) reaction proceeded much easier for azidocyanobutyrates. This allowed us to develop an efficient procedure for converting azidocyanobutyrates into the corresponding tetrazoles.
Key words
azides - nitriles - one-pot synthesis - 1,3-dipolar cycloaddition - tetrazoles - Knoevenagel condensation - Corey–Chaykovsky reaction - nucleophilic ring openingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706402.
- Supporting Information
- CIF File
-
References
- 1a Tietze LF. Chem. Rev. 1996; 96: 115
- 1b Pellissier H. Chem. Rev. 2013; 113: 442
- 1c Hayashi Y. Chem. Sci. 2016; 7: 866
- 2 Reissig H, Zimmer R. Chem. Rev. 2003; 103: 1151
- 3a Yankee EW, Spencer B, Howe NE, Cram DJ. J. Am. Chem. Soc. 1973; 95: 4220
- 3b Izquierdo ML, Arenal I, Bernabé M, Fernández Alvarez E. Tetrahedron 1985; 41: 215
- 3c Shao H, Ekthawatchai S, Wu S, Zou W. Org. Lett. 2004; 6: 3497
- 3d Emmett MR, Grover HK, Kerr MA. J. Org. Chem. 2012; 77: 6634
- 3e Haveli SD, Roy S, Gautam V, Parmar KC, Chandrasekaran S. Tetrahedron 2013; 69: 11138
- 3f Flisar ME, Emmett MR, Kerr MA. Synlett 2014; 25: 2297
- 3g Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY. Chem. Eur. J. 2015; 21: 4975
- 3h Richmond E, Vuković VD, Moran J. Org. Lett. 2018; 20: 574
- 4a Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
- 4b Akaev AA, Villemson EV, Vorobyeva NS, Majouga AG, Budynina EM, Melnikov MY. J. Org. Chem. 2017; 82: 5689
- 4c Ivanov KL, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 4464
- 4d Ivanov KL, Kravtsova AA, Kirillova EA, Melnikov MY, Budynina EM. Tetrahedron Lett. 2019; 60: 1952
- 4e Tukhtaev HB, Ivanov KL, Bezzubov SI, Cheshkov DA, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 1087
- 5 Ivanov KL, Villemson EV, Latyshev GV, Bezzubov SI, Majouga AG, Melnikov MY, Budynina EM. J. Org. Chem. 2017; 82: 9537
- 6 Ayoubi SA.-E, Texier-Boullet F, Hamelin J. Synthesis 1994; 258
- 7a Clemens JJ, Asgian JL, Busch BB, Coon T, Ernst J, Kaljevic L, Krenitsky PJ, Neubert TD, Schweiger EJ, Termin A, Stamos D. J. Org. Chem. 2013; 78: 780
- 7b Fraser W, Suckling CJ, Wood HC. S. J. Chem. Soc., Perkin Trans. 1 1990; 3137
- 8 Sarvary A, Maleki A. Mol. Divers. 2015; 19: 189
- 9a Carpenter WR. J. Org. Chem. 1962; 27: 2085
- 9b Himo F, Demko ZP, Noodleman L, Sharpless KB. J. Am. Chem. Soc. 2002; 124: 12210
- 10a Foldi Z. US2020937, 1935
- 10b Davis B, Brandstetter TW, Smith C, Hackett L, Winchester BG, Fleet GW. J. Tetrahedron Lett. 1995; 36: 7507
- 10c Davis BG, Brandstetter TW, Hackett L, Winchester BG, Nash RJ, Watson AA, Griffiths RC, Smith C, Fleet GW. J. Tetrahedron 1999; 55: 4489
- 10d Davis BG, Nash RJ, Watson AA, Smith C, Fleet GW. J. Tetrahedron 1999; 55: 4501
- 10e Demko ZP, Sharpless KB. Org. Lett. 2001; 3: 4091
- 10f Himo F, Demko ZP, Noodleman L, Sharpless KB. J. Am. Chem. Soc. 2003; 125: 9983
- 10g Bliznets IV, Shorshnev SV, Aleksandrov GG, Stepanov AE, Lukyanov SM. Tetrahedron Lett. 2004; 45: 9127
- 10h Lukyanov SM, Bliznets IV, Shorshnev SV, Aleksandrov GG, Stepanov AE, Vasil’ev AA. Tetrahedron 2006; 62: 1849
- 10i Hanessian S, Simard D, Deschênes-Simard B, Chenel C, Haak E. Org. Lett. 2008; 10: 1381
- 10j Hanessian S, Deschênes-Simard B, Simard D, Chenel C, Haak E, Bulat V. Pure Appl. Chem. 2010; 82: 1761
- 10k Biswas D, Ding F.-X, Dong S, Gu X, Jiang J, Pasternak A, Suzuki T, Vacca J, Xu S. PCT Int. Appl WO2015103756, 2015
- 10l Sarvary A, Khosravi F, Ghanbari M. Monatsh. Chem. 2018; 149: 39
- 11a Smith PA. S, Clegg JM, Hall JH. J. Org. Chem. 1958; 23: 524
- 11b Fusco R, Garanti L, Zecchi G. J. Org. Chem. 1975; 40: 1906
- 11c Garanti L, Zecchi G. J. Org. Chem. 1980; 45: 4767
- 11d Kay DP, Kennewell PD, Westwood R. J. Chem. Soc., Perkin Trans. 1 1982; 1879
- 11e Ermert P, Vasella A. Helv. Chim. Acta 1991; 74: 2043
- 11f Heightman TD, Ermert P, Klein D, Vasella A. Helv. Chim. Acta 1995; 78: 514
- 11g Brandstetter TW, Davis B, Hyett D, Smith C, Hackett L, Winchester BG, Fleet GW. J. Tetrahedron Lett. 1995; 36: 7511
- 11h Shilvock JP, Wheatley JR, Davis B, Nash RJ, Griffiths RC, Jones MG, Müller M, Crook S, Watkin DJ, Smith C, Besra GS, Brennan PJ, Fleet GW. J. Tetrahedron Lett. 1996; 37: 8569
- 11i Porter TC, Smalley RK, Teguiche M, Purwono B. Synthesis 1997; 773
- 11j Davis BG, Hull A, Smith C, Nash RJ, Watson AA, Winkler DA, Griffiths RC, Fleet GW. J. Tetrahedron: Asymmetry 1998; 9: 2947
- 11k Visentin S, Ermondi G, Boschi D, Grosa G, Fruttero R, Gasco A. Tetrahedron Lett. 2001; 42: 4507
- 11l Couty F, Durrat F, Prim D. Tetrahedron Lett. 2004; 45: 3725
- 11m Taylor MS, Zalatan DN, Lerchner AM, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 1313
- 11n Mohapatra DK, Maity PK, Ghorpade RV, Gurjar MK. Heterocycles 2009; 77: 865
- 11o Huang X, Li P, Li X.-S, Xu D.-C, Xie J.-W. Org. Biomol. Chem. 2010; 8: 4527
- 11p Mishra A, Hutait S, Bhowmik S, Rastogi N, Roy R, Batra S. Synthesis 2010; 2731
- 11q Borah P, Seetham Naidu P, Bhuyan PJ. Tetrahedron Lett. 2012; 53: 5034
- 11r Afraj SN, Chen C, Lee G.-H. RSC Adv. 2016; 6: 29783
- 11s Wang Y, Leng L, Liu Y, Dai G, Xue F, Chen Z, Meng J, Wen G, Xiao Y, Liu X.-Y, Qin Y. Org. Lett. 2018; 20: 6701
- 12a Korakas D, Kimbaris A, Varvounis G. Tetrahedron 1996; 52: 10751
- 12b Garanti L, Broggini G, Molteni G, Zecchi G. Heterocycles 1999; 51: 1295
- 12c Anegundi RI, Puranik VG, Hotha S. Org. Biomol. Chem. 2008; 6: 779
- 12d Donald JR, Martin SF. Org. Lett. 2011; 13: 852
- 12e Hemming K, Chambers CS, Hamasharif MS, João H, Khan MN, Patel N, Airley R, Day S. Tetrahedron 2014; 70: 7306
- 12f Pino-Gonzalez MS, Romero-Carrasco A, Calvo-Losada S, Oña-Bernal N, Quirante JJ, Sarabia F. RSC Adv. 2017; 7: 50367
- 13 Desai P, Schildknegt K, Agrios KA, Mossman C, Milligan GL, Aubé J. J. Am. Chem. Soc. 2000; 122: 7226
- 14 Aube J, Milligan GL. J. Am. Chem. Soc. 1991; 113: 8965
- 15 Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555