Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(05): 488-490
DOI: 10.1055/s-0040-1707109
DOI: 10.1055/s-0040-1707109
cluster
The Power of Transition Metals: An Unending Well-Spring of New Reactivity
Facile C–S Bond Cleavage of Aryl Sulfoxides Promoted by Brønsted Acid
We thank the Österreichischen Akademie der Wissenschaften (Austrian Academy of Sciences) (DOC Fellowship to I.K.) and the H2020 European Research Council (ERC Consolidator Grant VINCAT, 682002) for support of this research. Continued generous support of our research programs by Universität Wien (University of Vienna) is gratefully acknowledged.Further Information
Publication History
Received: 14 March 2020
Accepted after revision: 15 April 2020
Publication Date:
06 May 2020 (online)
Dedicated with respect and admiration to Prof. Barry M. Trost, a founding member of Science of Synthesis, on the occasion of the 20th anniversary of Science of Synthesis.
‡ These authors contributed equally to this work
Abstract
A method for the Brønsted acid promoted desulfination of aryl sulfoxides is presented. In the presence of a thiol, electron-rich sulfoxides undergo C–S bond cleavage to give the corresponding protodesulfinated arenes and disulfides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707109.
- Supporting Information
-
References and Notes
- 1a Jia T, Wang M, Liao J. Top. Curr. Chem. 2019; 377: 1
- 1b Trost B, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
- 1c Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
- 1d Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
- 2a Frey J, Jerhaoui S, Choppin S, Wencel-Delord J, Colobert F. ACS Catal. 2018; 8: 2805
- 2b Aitken HR. M, Furkert DP, Hubert JG, Wood JM, Brimble MA. Org. Biomol. Chem. 2013; 11: 5147
- 2c Motohashi S, Nagase K, Nakakita T, Matsuo T, Yoshida Y, Kawakubo T, Miura M, Toriyama M, Barybin MV. J. Org. Chem. 2011; 76: 3922
- 3a Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
- 3b Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
- 4a Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 4b Yanagi T, Nogi K, Yorimitsu H. Tetrahedron Lett. 2018; 59: 2951
- 5 Maryasin B, Kaldre D, Galaverna R, Klose I, Ruider S, Drescher M, Kählig H, González L, Eberlin M, Jurberg I, Maulide N. Chem. Sci. 2018; 9: 4124
- 6 Yanagi T, Nogi K, Yorimitsu H. Chem. Eur. J. 2020; 26: 783
- 7a Kaldre D, Maryasin B, Kaiser D, Gajsek O, Gonzalez L, Maulide N. Angew. Chem Int. Ed. 2017; 56: 2212
- 7b Kaldre D, Klose I, Maulide N. Science 2018; 361: 664
- 8 Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
- 9a Lindner O, Rodefeld L. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2010: 269
- 9b Grundmann C. In Houben-Weyl Methods of Organic Chemistry, 4th ed., Vol. 5/2b. Blome H, Clar E, Fiege H, Garratt PJ, Grundmann C, Gundermann K.-D, Padeken H.-G, Pauson PL, Voelter W, Zander M, Zeller K.-P. Georg Thieme Verlag; Stuttgart: 1981. 354
- 9c For acid-promoted C–S bond cleavage in sulfoximines, see: Wiezorek S, Lamers P, Bolm C. Chem. Soc. Rev. 2019; 48: 5408
- 10a Cogan DA, Ellman JA. J. Am. Chem. Soc. 1999; 121: 268
- 10b Kochi T, Tang TP, Ellman JA. J. Am. Chem. Soc. 2003; 125: 11276
- 11 Hamel P, Zajac N, Atkinson JG, Girard Y. J. Org. Chem. 1994; 59: 6372
- 12a Klein LL. J. Am. Chem. Soc. 1985; 107: 2573
- 12b Ohshima T, Xu Y, Takita R, Shimizu S, Zhong D, Shibasaki M. J. Am. Chem. Soc. 2002; 124: 14546
- 12c Carreño MC, Des Mazery R, Urbano A, Colobert F, Solladié G. Org. Lett. 2004; 6: 297
- 13a Mastranzo VM, Yuste F, Ortiz B, Sánchez-Obregón R, Toscano RA, García Ruano JL. J. Org. Chem. 2011; 76: 5036
- 13b Takiguchi H, Ohmori K, Suzuki K. Chem. Lett. 2011; 40: 1069
- 13c Vakiti JR, Ghosh S. Tetrahedron Lett. 2014; 55: 6438
- 14 Pons A, Michalland J, Zawodny W, Chen Y, Tona V, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 17303
- 15a Singh PK, Field L, Sweetman BJ. J. Org. Chem. 1988; 53: 2608
- 15b Schöberl A, Gräfje H. Justus Liebigs Ann. Chem. 1958; 617: 71
-
16
Protodesulfination; General Procedure
To a solution of the sulfoxide (0.2 mmol, 1.0 equiv) and 1-octanethiol (0.8 mmol, 4.0 equiv) in CH2Cl2 (0.2 M) in a vial, trifluoromethanesulfonic acid (0.1 mmol, 0.5 equiv) was added and the mixture was stirred for 12 h at 23 °C. The reaction was quenched by the addition of solid NaHCO3, stirred at 23 °C for 10 min, filtered and extracted with CH2Cl2. The resulting organic phase was dried over MgSO4 and concentrated under reduced pressure to give a crude product that was purified by column chromatography (heptane/ethyl acetate).
-
17
1,3,5-Trimethoxy-2-(methylsulfinyl)benzene (1b)
IR (neat): 2943, 1582, 1465, 1458, 1436, 1412, 1340, 1230, 1208, 1187, 1162, 1125, 1086, 1026 cm–1. 1H NMR (600 MHz, CDCl3): δ = 6.12 (s, 2 H), 3.88 (s, 6 H), 3.84 (s, 3 H), 3.04 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 164.7, 161.3, 111.5, 91.3, 56.3, 55.7, 38.0. HRMS (ESI+): m/z [M + Na]+ calcd for C10H14O4SNa: 253.0505; found: 253.0512.
For representative examples of sulfoxide removal in total synthesis using Raney-nickel, see:
For representative examples of sulfoxide removal in total synthesis using t-BuLi, see: