Synlett 2021; 32(15): 1547-1550
DOI: 10.1055/s-0040-1707170
cluster
Modern Nickel-Catalyzed Reactions

Ligand-Free Nickel-Catalyzed Reductive Allylic Defluorinative Cross-Coupling of α-Trifluoromethyl Alkenes with Epoxides

Zhiyang Lin
a   Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Yun Lan
a   Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Chuan Wang
a   Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
b   Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Grant No. 21772183), the Fundamental Research Funds for the Central Universities (WK2060190086), ‘1000-Youth Talents Plan’ start-up funding, and by the University of Science and Technology of China.


Abstract

We report a reductive allylic defluorinative reaction of α-trifluoromethyl alkenes with terminal epoxides, which consists of an iodide-mediated regioselective ring opening and a nickel-catalyzed radical-type cross-coupling, providing diverse tertiary gem-difluorobishomoallylic alcohols in moderate to high yields. Notably, this reaction is conducted under mild conditions and requires no external ligand or proton donor.

Supporting Information



Publication History

Received: 05 May 2020

Accepted: 01 June 2020

Article published online:
01 July 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 1b Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Fluorine Chem. 2006; 127: 637
    • 2a Bobek M, Kavai I, De Clercq E. J. Med. Chem. 1987; 30: 1494
    • 2b Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292
    • 2c Altenburger J.-M, Lassalle GY, Matrougui M, Galtier D, Jetha J.-C, Bocskei Z, Berry CN, Lunven C, Lorrain J, Herault J.-P, Schaeffer PE, O’Connor S, Herbert J.-M. Bioorg. Med. Chem. 2004; 12: 1713
    • 2d Messaoudi S, Treguier B, Hamze A, Provot O, Peyrat J.-F, De Losada JR, Liu J.-M, Bignon J, Wdzieczak-Bakala J, Thoret S, Dubois J, Brion J.-D, Alami M. J. Med. Chem. 2009; 52: 4538

      For reviews on the synthesis of gem -difluoroalkenes and their applications in organic synthesis, see:
    • 3a Ichikawa J. J. Fluorine Chem. 2000; 105: 257
    • 3b Chelucci G. Chem. Rev. 2012; 112: 1344
    • 3c Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
    • 4a Nowak R, Robins MJ. Org. Lett. 2005; 7: 721
    • 4b Zhao Y, Huang W, Zhu L, Hu J. Org. Lett. 2010; 12: 1444
    • 4c Zheng J, Lin J.-H, Cai J, Xiao J.-C. Chem. Eur. J. 2013; 19: 15261
    • 4d Zheng J, Cai J, Lin J.-H, Guo Y, Xiao J.-C. Chem. Commun. 2013; 49: 7513
    • 4e Thomoson CS, Martinez H, Dolbier WR. Jr. J. Fluorine Chem. 2013; 150: 53
    • 4f Hu M, He Z, Gao B, Li L, Ni C, Hu J. J. Am. Chem. Soc. 2013; 135: 17302
    • 4g Li Q, Lin J.-H, Deng Z.-Y, Zheng J, Cai J, Xiao J.-C. J. Fluorine Chem. 2014; 163: 38
    • 4h Gao B, Zhao Y, Hu M, Ni C, Hu J. Chem. Eur. J. 2014; 20: 7803
    • 4i Wang X.-P, Lin J.-H, Xiao J.-C, Zheng X. Eur. J. Org. Chem. 2014; 2014: 928
    • 4j Aikawa K, Toya W, Nakamura Y, Mikami K. Org. Lett. 2015; 17: 4996
    • 4k Gao B, Zhao Y, Hu J, Hu J. Org. Chem. Front. 2015; 2: 163
    • 4l Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496
    • 4m Zheng J, Lin J.-H, Yu L.-Y, Wei Y, Zheng X, Xiao J.-C. Org. Lett. 2015; 17: 6150
    • 4n Zhang Z, Yu W, Wu C, Wang C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2016; 55: 273
    • 4o Krishnamoorthy S, Kothandaraman J, Saldana J, Prakash GK. S. Eur. J. Org. Chem. 2016; 2016: 4965
    • 4p Zeng J.-L, Zhang Y, Zheng M.-M, Zhang Z.-Q, Xue X.-S, Zhang F.-G, Ma J.-A. Org. Lett. 2019; 21: 8244
    • 4q Wang S, Cheng B.-Y, Sršen M, König B. J. Am. Chem. Soc. 2020; 142: 7524
    • 5a Hiyama T, Obayashi M, Sawahata M. Tetrahedron Lett. 1983; 24: 4113
    • 5b Fuchikami T, Shibata Y, Suzuki Y. Tetrahedron Lett. 1986; 27: 3173
    • 5c Bégué J.-P, Bonnet-Delpon D, Rock MH. Tetrahedron Lett. 1995; 36: 5003
    • 5d Bégué J.-P, Bonnet-Delpon D, Rock MH. J. Chem. Soc., Perkin Trans. 1 1996; 1409
    • 5e Ichikawa J, Fukui H, Ishibashi Y. J. Org. Chem. 2003; 68: 7800
    • 5f Ichikawa J, Ishibashi Y, Fukui H. Tetrahedron Lett. 2003; 44: 707
    • 5g Ichikawa J, Mori T, Iwai Y. Chem. Lett. 2004; 33: 1354
    • 5h Miura T, Ito Y, Murakami M. Chem. Lett. 2008; 37: 1006
    • 5i Ichikawa J, Iwai Y, Nadano R, Mori T, Ikeda M. Chem. Asian J. 2008; 3: 393
    • 5j Fuchibe K, Takahashi M, Ichikawa J. Angew. Chem. Int. Ed. 2012; 51: 12059
    • 5k Cai Y, Zeng H, Zhu C, Liu C, Jiang H. Org. Chem. Front. 2020; 7: 1260
    • 5l Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
    • 5m Lang S, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
    • 5n Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
    • 5o He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
    • 5p Wiles RJ, Phelan JP, Molander JA. Chem. Commun. 2019; 55: 7599
    • 5q Guo Y.-Q, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2020; 22: 709
    • 5r Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371
    • 5s Ichitsuka T, Fujita T, Ichikawa J. ACS Catal. 2015; 5: 5947
    • 5t Hayashi T, Huang YH. J. Am. Chem. Soc. 2016; 138: 12340
    • 5u Liu Y, Zhou Y, Zhao Y, Qu J. Org. Lett. 2017; 19: 946
    • 5v Dai W, Lin Y, Wan Y, Cao S. Org. Chem. Front. 2018; 5: 55
    • 5w Wu X, Xie F, Gridnev ID, Zhang W. Org. Lett. 2018; 20: 1638
    • 5x Wang P, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. J. Am. Chem. Soc. 2018; 140: 9061
    • 5y Chen F, Xu X, He Y, Huang G, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 5398
    • 5z Yao C, Wang S, Norton J, Hammond M. J. Am. Chem. Soc. 2020; 142: 4793
  • 6 For a review on the applications of α-trifluoromethyl alkenes in organic synthesis, see: Tian F, Yan G, Yu J. Chem. Commun. 2019; 55: 13486

    • For reviews on C–F bond cleavage, see:
    • 7a Burdeniuc J, Jedicka B, Crabtree RH. Chem. Ber. 1997; 130: 145
    • 7b Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 7c Ahrens T, Kohlmann J, Ahrens M, Braun TF. Chem. Rev. 2015; 115: 931
    • 7d Shen Q, Huang Y.-G, Liu C, Xiao J.-C, Chen Q.-Y, Guo Y. J. Fluorine Chem. 2015; 179: 14
    • 7e Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 9a Ichikawa J, Nadano R, Ito N. Chem. Commun. 2006; 4425
    • 9b Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
    • 9c Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
    • 9d Lin Z, Lan Y, Wang C. Org. Lett. 2019; 21: 8316
    • 9e Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
    • 9f Lu X, Wang X.-X, Gong T.-J, Pi J.-J, He S.-J, Fu Y. Chem. Sci. 2019; 10: 809
    • 9g Li J, Rao W, Wang S.-Y, Ji S.-J. J. Org. Chem. 2019; 84: 11542
    • 9h Lin Z, Lan Y, Wang C. Org. Lett. 2020; 22: 3509
  • 10 While this manuscript was under preparation, Lu et al. reported a related reductive cross-coupling of α-trifluoromethyl alkenes with epoxides, see: Lu X.-Y, Jiang R.-C, Li J.-M, Liu C.-C, Wang Q.-Q, Zhou H.-P. Org. Biomol. Chem. 2020; 18: 3674
  • 11 4-Aryl-5,5-difluoropent-4-en-1-ols (3aala, 3abam); General Procedure A Schlenk tube equipped with a stirrer bar was charged with NiI2 (8.8 mg, 0.04 mmol, 10 mol %), NaI (30 mg, 0.2 mmol, 0.5 equiv), and Zn (78 mg, 1.2 mmol, 3 equiv). The tube was then evacuated and filled with N2 (three cycles). DMA (1.0 mL) was added under N2, followed by the appropriate trifluoromethyl alkene 1 (0.4 mmol, 1.0 equiv) and epoxide 2 (0.8 mmol, 2.0 equiv). The mixture was stirred at rt for 24 h, and then the reaction was quenched by addition of H2O. The aqueous phase was extracted with EtOAc (3 × 20 mL) and the combined organic phases were washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude material was purified by column chromatography (silica gel, PE–EtOAc). 7,7-Difluoro-1,6-bis(4-methoxyphenyl)-3-methylhept-6-en-3-ol (3aa) Colorless oil; yield: 126 mg (84%). 1H NMR (400 MHz, CDCl3): δ = 7.24 (d, J = 7.9 Hz, 2 H), 7.08 (d, J = 8.6 Hz, 2 H), 6.89 (d, J = 8.8 Hz, 2 H), 6.82 (d, J = 8.6 Hz, 2 H), 3.80 (s, 3 H), 3.77 (s, 3 H), 2.60–2.53 (m, 2 H), 2.49–2.42 (m, 2 H), 1.77–1.68 (m, 2 H), 1.59–1.53 (m, 2 H), 1.23 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 158.7, 157.8, 153.2 (dd, J = 289.1, 286.2 Hz), 134.3, 129.3 (t, J = 3.4 Hz, 2 C), 129.2 (2 C), 125.7 (t, J = 2.8 Hz), 114.0 (2 C), 113.9 (2 C), 91.9 (dd, J = 20.6, 14.3 Hz), 72.4, 55.3 (2 C), 43.9, 39.9 (t, J = 2.3 Hz), 29.4, 26.7, 22.5. 19F NMR (376 MHz, CDCl3): δ = –92.39 (d, J = 46.6 Hz, 1 F), –92.58 (d, J = 46.7 Hz, 1 F). HRMS (ESI): m/z [M + Na]+ calcd for C22H26F2NaO3: 399.1742; found: 399.1741.