Subscribe to RSS
DOI: 10.1055/s-0040-1707230
Simple Synthesis of Dimethyl Nitrobenzhydrylphosphonates and Heteroarylnitroarylacetonitriles via Vicarious Nucleophilic Substitution (VNS) Reaction
Publication History
Received: 28 May 2020
Accepted after revision: 30 June 2020
Publication Date:
25 August 2020 (online)
Abstract
Acetals of dimethyl phenyl- and heteroaryl-α-hydroxymethanephosphonates were deprotonated to generate carbanions, which enter the vicarious nucleophilic substitution (VNS) of hydrogen in aromatic nitro compounds to form 4-nitrobenzhydrylphosphonates and α-heteroaryl-4-nitrobenzylphosphonates. Similarly acetals of cyanohydrins of heteroaromatic aldehydes (furfural and 2-formylthiophene) react to form heteroaryl 4-nitroarylacetonitriles. The anion of the hemiacetal of acetaldehyde is an efficient leaving group in the base-induced β-elimination step – the crucial step in the VNS reaction. The reaction selectively occurred at the para-position to the nitro group.
Key words
arylmethanephosphonates - arylacetonitriles - carbanions - nitroarenes - acetals - vicarious nucleophilic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707230.
- Supporting Information
-
References
- 1a Goliński J, Mąkosza M. Tetrahedron Lett. 1978; 3495
- 1b Mąkosza M, Winiarski J. Acc. Chem. Res. 1987; 20: 282
- 1c Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 1d Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 1e Mąkosza M. Synthesis 2017; 49: 3247
- 1f Loska R., Mąkosza M.; Synthesis 2020, 52: in press; DOI: 10.1055/s-0040-1707149.
- 2 Mąkosza M, Goliński J. Angew. Chem. Int. Ed. 1982; 21: 451
- 3a Mąkosza M, Goliński J, Baran J. J. Org. Chem. 1984; 49: 1488
- 3b Brześkiewicz J, Loska R, Mąkosza M. J. Org. Chem. 2018; 83: 8499
- 4a Mąkosza M, Winiarski J. Chem. Lett. 1984; 13: 1623
- 4b Mąkosza M, Danikiewicz W, Wojciechowski K. Liebigs Ann. Chem. 1988; 203
- 5 Mąkosza M, Winiarski J. J. Org. Chem. 1984; 49: 1494
- 7 Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 8 Pallikonda G, Chakravarty M. Eur. J. Org. Chem. 2013; 944
- 9 Montel S, Raffier L, He YY, Walsh PJ. Org. Lett. 2014; 16: 1446
- 10a Lawrence NJ, Liddle J, Jackson DA. Tetrahedron Lett. 1995; 36: 8477
- 10b Harger MJ. P. J. Chem. Soc., Perkin Trans. 2 2001; 41
- 11a Mąkosza M, Sulikowski D. Synlett 2010; 1666
- 11b Mąkosza M, Sulikowski D. J. Org. Chem. 2009; 74: 3827
- 12 Prasad SS, Singh DK, Kim I. J. Org. Chem. 2019; 84: 6323
- 13a Sisido K, Nozaki H, Nozaki M, Okano K. J. Org. Chem. 1954; 19: 1699
- 13b Sumi T, Goseki R, Otsuka H. Chem. Commun. 2017; 53: 11885
- 14a Chen G, Wang Z, Wu J, Ding KL. Org. Lett. 2008; 10: 4573
- 14b Theerthagiri P, Lalitha A. Tetrahedron Lett. 2012; 53: 5535
- 15 Nambo M, Yar M, Smith JD, Crudden CM. Org. Lett. 2015; 17: 50
- 16 Mąkosza M, Jagusztyn-Grochowska M, Ludwikow M, Jawdosiuk M. Tetrahedron 1974; 30: 3723
- 17a Hermann CK. F, Sachdeva YP, Wolfe JF. J. Heterocycl. Chem. 1987; 24: 1061
- 17b Cherng Y.-J. Tetrahedron 2002; 58: 4931
- 18 Yin Z, Zhang Z, Kadow JF, Meanwell NA, Wang T. J. Org. Chem. 2004; 69: 1364
- 19 Temelli B, Unaleroglu C. Synthesis 2014; 46: 1407
- 20 Rad N, Mąkosza M. Eur. J. Org. Chem. 2018; 376
- 21 Kozlowski JK, Rath NP, Spilling CD. Tetrahedron 1995; 51: 6385
- 22 Mąkosza M, Goetzen T. Org. Prep. Proced. Int. 1973; 5: 203
- 23 Singh DK, Prasad SS, Kim J, Kim I. Org. Chem. Front. 2019; 6: 669