Synthesis, Inhaltsverzeichnis Synthesis 2021; 53(01): 51-64DOI: 10.1055/s-0040-1707234 short review © Georg Thieme Verlag Stuttgart · New York Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents José María Muñoz-Molina∗ , Tomás R. Belderrain∗ , Pedro J. Pérez ∗ Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain eMail: perez@ciqso.uhu.es › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract This Short Review is aimed at giving an update in the area of copper-catalyzed C–H functionalization involving nitrogen-centered radicals generated from substrates containing N–F bonds. These processes include intermolecular Csp3–H bond functionalization, remote Csp3–H bond functionalization via intramolecular hydrogen atom transfer (HAT), and Csp2–H bond functionalization, which might be of potential use in industrial applications in the future. 1 Introduction 2 Intermolecular Csp3–H Functionalization 3 Remote Csp3–H Functionalization 4 Csp2–H Functionalization 5 Conclusion Key words Key wordscopper catalysis - C–H bond functionalization - amination - nitrogen–fluorine bond - radical fluorination Volltext Referenzen References 1a Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851 1b Fischer H. Chem. Rev. 2001; 101: 3581 1c Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74 1d Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237 1e Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58 2a Togo H. Advanced Free Radical Reactions for Organic Synthesis. Elsevier; Amsterdam: 2004 2b Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692 2c Walton JC. Top. Curr. Chem. 2006; 264: 163 2d Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070 2e Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016 3a Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519 3b Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459 3c Pintauer T. Eur. J. Inorg. Chem. 2010; 2449 3d Muñoz-Molina JM, Belderrain TR, Pérez PJ. Eur. J. Inorg. Chem. 2011; 3155 3e Schiesser CH, Wille U, Matsubara H, Ryu I. Acc. Chem. Res. 2007; 40: 303 3f Li ZL, Fang GC, Gu QS, Liu XY. Chem. Soc. Rev. 2020; 49: 32 3g Gu QS, Li ZL, Liu XY. Acc. Chem. Res. 2020; 53: 170 4 Yang JD, Wang Y, Xue XS, Cheng JP. J. Org. Chem. 2017; 82: 4129 5a Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2004; 44: 192 5b Singh RP, Shreeve JM. Acc. Chem. Res. 2004; 37: 31 6 Taylor SD, Kotoris GC, Hum G. Tetrahedron 1999; 55: 12431 7 Differding E, Ofner H. Synlett 1991; 187 8 Kiselyov AS. Chem. Soc. Rev. 2005; 34: 1031 9a Lal GS, Pez GP, Syvret RG. Chem. Rev. 1996; 96: 1737 9b Meyer D, Jangra H, Walther F, Zipse H, Renaud P. Nat. Commun. 2018; 9: 1 9c Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216 9d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192 9e Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433 9f Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003 9g Champagne PA, Desroches J, Hamel JD, Vandamme M, Paquin JF. Chem. Rev. 2015; 115: 9073 9h Szpera R, Moseley DF. J, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824 10a Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247 10b Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610 10c Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069 10d Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613 11 Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew. Chem. Int. Ed. 2012; 51: 10580 12 Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J. Am. Chem. Soc. 2014; 136: 9780 13 Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244 14 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014 15 Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Nature 2019; 574: 516 16 Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709 17 Zhang W, Wu L, Chen P, Liu G. Angew. Chem. Int. Ed. 2019; 58: 6425 18 Zhou J, Zou Y, Zhou P, Chen Z, Li J. Org. Chem. Front. 2019; 6: 1594 19 Xiao H, Liu Z, Shen H, Zhang B, Zhu L, Li C. Chem 2019; 5: 940 20 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547 21 Sathyamoorthi S, Lai Y.-H, Bain RM, Zare RN. J. Org. Chem. 2018; 83: 5681 22 Hu H, Chen SJ, Mandal M, Pratik SM, Buss JA, Krska SW, Cramer CJ, Stahl SS. Nat. Catal. 2020; 3: 358 23 Zhou J, Jin C, Li X, Su W. RSC Adv. 2015; 5: 7232 24 Guo Z, Jin C, Zhou J, Su W. RSC Adv. 2016; 6: 79016 25a Groendyke BJ, Abusalim DI, Cook SP. J. Am. Chem. Soc. 2016; 138: 12771 25b Bafaluy D, Muñoz-Molina JM, Funes-Ardoiz I, Herold S, de Aguirre AJ, Zhang H, Maseras F, Belderrain TR, Pérez PJ, Muñiz K. Angew. Chem. Int. Ed. 2019; 58: 8912 26 Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288 27 Zhang Z, Stateman LM, Nagib DA. Chem. Sci. 2019; 10: 1207 28 Liu Z, Xiao H, Zhang B, Shen H, Zhu L, Li C. Angew. Chem. Int. Ed. 2019; 58: 2510 29 Yin Z, Zhang Y, Zhang S, Wu XF. Adv. Synth. Catal. 2019; 361: 5478 30 Wang CY, Qin ZY, Huang YL, Hou YM, Jin RX, Li C, Wang XS. Org. Lett. 2020; 22: 4006 31 Zhang H, Zhou Y, Tian P, Jiang C. Org. Lett. 2019; 21: 1921 32 Zhang Z, Zhang X, Nagib DA. Chem 2019; 5: 3127 33 Modak A, Pinter EN, Cook SP. J. Am. Chem. Soc. 2019; 141: 18405 34 Qin Y, Han Y, Tang Y, Wei J, Yang M. Chem. Sci. 2020; 11: 1276 35 Min QQ, Yang JW, Pang MJ, Ao GZ, Liu F. Org. Lett. 2020; 22: 2828 36 Zhang H, Tian P, Ma L, Zhou Y, Jiang C, Lin X, Xiao X. Org. Lett. 2020; 22: 997 37 Yin Z, Zhang Y, Zhang S, Wu XF. J. Catal. 2019; 377: 507 38a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564 38b Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27 38c Hartwig JF. Acc. Chem. Res. 2008; 41: 1534 38d Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283 38e Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753 38f Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118 39a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054 39b Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450 39c Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954 39d Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13 39e Qiao JX, Lam PY. S. Synthesis 2011; 829 40 Guaand Q, Vessally E. RSC Adv. 2020; 10: 16756 41 Wang S, Ni Z, Huang X, Wang J, Pan Y. Org. Lett. 2014; 16: 5648 42 Haines BE, Kawakami T, Kuwata K, Murakami K, Itami K, Musaev DG. Chem. Sci. 2017; 8: 988 43 Yin Y, Xie J, Huang FQ, Qi LW, Zhang B. Adv. Synth. Catal. 2017; 359: 1037 44 Lu S, Tian LL, Cui TW, Zhu YS, Zhu X, Hao XQ, Song MP. J. Org. Chem. 2018; 83: 13991 45 Luo SS, Su LJ, Jiang Y, Li XB, Li ZH, Sun H, Liu JK. Synlett 2018; 29: 1525 46 Zhang Y, Wen C, Zhang C, Li J. Chem. Res. Chin. Univ. 2018; 34: 552 47 Gao DW, Vinogradova EV, Nimmagadda SK, Medina JM, Xiao Y, Suciu RM, Cravatt BF, Engle KM. J. Am. Chem. Soc. 2018; 140: 8069 48 Zhang J, Shi D, Zhang H, Xu Z, Bao H, Jin H, Liu Y. Tetrahedron 2017; 73: 154 49 Bao H, Hu X, Zhang J, Liu Y. Tetrahedron 2019; 75: 130533 50 Zhang G, Xiong T, Wang Z, Xu G, Wang X, Zhang Q. Angew. Chem. Int. Ed. 2015; 54: 12649