Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(23): 3684-3692
DOI: 10.1055/s-0040-1707237
DOI: 10.1055/s-0040-1707237
paper
Catalytic Asymmetric Substitution Reaction of 3-Substituted 2-Indolylmethanols with 2-Naphthols
We appreciate the financial support from the National Natural Science Foundation of China (21772069 and 21831007), Six Kinds of Talents Project of Jiangsu Province (SWYY-025), TAPP, and Undergraduate Students Project of JSNU.Further Information
Publication History
Received: 10 June 2020
Accepted after revision: 13 July 2020
Publication Date:
17 August 2020 (online)

§ These authors contributed equally to the work
Abstract
A catalytic asymmetric substitution of 3-substituted 2-indolylmethanols with 2-naphthols has been established under the catalysis of chiral phosphoric acid. By this approach, a series of structurally diversified triarylmethane derivatives were obtained in moderate to high yields with good enantioselectivities (up to 97% yield, 95:5 er). This approach not only enriches the chemistry of 2-indolylmethanol-inolved catalytic asymmetric substitutions, but also provides a useful method for the enantioselective synthesis of chiral triarylmethane derivatives.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707237.
- Supporting Information
-
References
- 1a Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
- 1b Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
- 1c Wang L, Chen Y, Xiao J. Asian J. Org. Chem. 2014; 3: 1036
- 1d Zhu S, Xu L, Wang L, Xiao J. Chin. J. Org. Chem. 2016; 36: 1229
- 1e Mei G.-J, Shi F. J. Org. Chem. 2017; 82: 7695
- 1f Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 1g Petrini M. Adv. Synth. Catal. 2020; 362: 1214
- 2a Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
- 2b Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709
- 3a Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
- 3b Zhu Z.-Q, Shen Y, Liu J.-X, Tao J.-Y, Shi F. Org. Lett. 2017; 19: 1542
- 3c Xu M.-M, Wang H.-Q, Mao Y.-J, Mei G.-J, Wang S.-L, Shi F. J. Org. Chem. 2018; 83: 5027
- 4a Sun X.-X, Zhang H.-H, Li G.-H, He Y.-Y, Shi F. Chem. Eur. J. 2016; 22: 17526
- 4b Zhu Z.-Q, Shen Y, Sun X.-X, Tao J.-Y, Liu J.-X, Shi F. Adv. Synth. Catal. 2016; 358: 3797
- 4c Xu M.-M, Wang H.-Q, Wan Y, Wang S.-L, Shi F. J. Org. Chem. 2017; 82: 10226
- 4d Mao J, Zhang H, Ding X.-F, Luo X, Deng W.-P. J. Org. Chem. 2019; 84: 11186
- 4e Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
- 4f Zhou S.-J, Sun M, Wang J.-Y, Yu X.-Y, Lu H, Zhang Y.-C, Shi F. Eur. J. Org. Chem. 2020; 4301
- 5a Bera K, Schneider C. Chem. Eur. J. 2016; 22: 7074
- 5b Bera K, Schneider C. Org. Lett. 2016; 18: 5660
- 5c Sun X.-X, Li C, He Y.-Y, Zhu Z.-Q, Mei G.-J, Shi F. Adv. Synth. Catal. 2017; 359: 2660
- 5d Li C, Lu H, Sun X.-X, Mei G.-J, Shi F. Org. Biomol. Chem. 2017; 15: 4794
- 6a Qi S, Liu C.-Y, Ding J.-Y, Han F.-S. Chem. Commun. 2014; 50: 8605
- 6b Liu C.-Y, Han F.-S. Chem. Commun. 2015; 51: 11844
- 6c Gong Y.-X, Wu Q, Zhang H.-H, Zhu Q.-N, Shi F. Org. Biomol. Chem. 2015; 13: 7993
- 6d Mao Y.-J, Lu Y.-N, Li T.-Z, Wu Q, Tan W, Shi F. Chin. J. Org. Chem. 2020; 40
- 7a Chintharlapalli S, Burghardt R, Papineni S, Ramaiah S, Yoon K, Safe S. J. Biol. Chem. 2005; 280: 24903
- 7b Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M. Cancer. Res. 2005; 65: 2890
- 7c Song B.-B, Qu X, Zhang L, Han K.-L, Wu D, Xiang C, Wu H.-R, Wang T.-J, Teng Y.-O, Yu P. J. Chem. Pharm. Res. 2014; 6: 239
- 7d Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
- 7e Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
- 7f Wong YF, Wang Z, Sun J. Org. Biomol. Chem. 2016; 14: 5751
- 8a Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: in press; 10.1002/chem.202001397
- 8b Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
- 8c Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 8d Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
- 8e Jiang F, Chen K.-W, Wu P, Zhang Y.-C, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 15104
- 8f Sheng F.-T, Li Z.-M, Zhang Y.-Z, Sun L.-X, Zhang Y.-C, Tan W, Shi F. Chin. J. Chem. 2020; 38: 583
- 9a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 9b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 10a Akiyama T. Chem. Rev. 2007; 107: 5744
- 10b Terada M. Chem. Commun. 2008; 35: 4097
- 10c Terada M. Synthesis 2010; 1929
- 10d Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
- 10e Su E.-J, Shi F.-J. Chin. J. Org. Chem. 2010; 30: 486
- 10f Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 10g Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 10h Wu H, He Y.-P, Shi F. Synthesis 2015; 47: 1990
- 10i Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
- 10j Merad J, Lalli C, Bernadat G, Maury J, Masson G. Chem. Eur. J. 2018; 24: 3925
- 10k Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 10l Liu L, Zhang J. Chin. J. Org. Chem. 2019; 39: 3308
- 10m Tan B. Chin. J. Org. Chem. 2020; 40: 1404
- 11a Yamanaka M, Itoh J, Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2007; 129: 6756
- 11b Chen Y.-H, Cheng D.-J, Zhang J, Wang Y, Liu X.-Y, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
- 11c Tang M, Zhao J.-J, Wu Q, Tu M.-S, Shi F. Synthesis 2017; 49: 2035
- 11d Wu J.-L, Wang J.-Y, Wu P, Wang J.-R, Mei G.-J, Shi F. Org. Chem. Front. 2018; 5: 1436
- 11e Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
- 11f Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
For some pertinent reviews, see:
For early examples, see:
For substitutions, see:
For cyclizations, see:
For cyclizations, see also:
For substitutions, see also:
For some examples on bioactivity, see:
For some examples on asymmetric synthesis, see:
For a recent review, see:
For some examples, see:
For early examples, see:
For some relevant reviews, see:
For highlights, see:
For an early example on the bifunctional nature of CPA, see:
For some recent examples, see: