Subscribe to RSS
DOI: 10.1055/s-0040-1707269
Deoxygenative Transition-Metal-Promoted Reductive Coupling and Cross-Coupling of Alcohols and Epoxides
We are grateful to the National Science Foundation for support of our research in this area (CHE-1566213).
Abstract
The prospective utilization of abundant, CO2-neutral, renewable feedstocks is driving the discovery and development of new reactions that refunctionalize oxygen-rich substrates such as alcohols and polyols through C–O bond activation. In this review, we highlight the development of transition-metal-promoted reactions of renewable alcohols and epoxides that result in carbon–carbon bond-formation. These include reductive self-coupling reactions and cross-coupling reactions of alcohols with alkenes and arene derivatives. Early approaches to reductive couplings employed stoichiometric amounts of low-valent transition-metal reagents to form the corresponding hydrocarbon dimers. More recently, the use of redox-active transition-metal catalysts together with a reductant has enhanced the practical applications and scope of the reductive coupling of alcohols. Inclusion of other reaction partners with alcohols such as unsaturated hydrocarbons and main-group organometallics has further expanded the diversity of carbon skeletons accessible and the potential for applications in chemical synthesis. Catalytic reductive coupling and cross-coupling reactions of epoxides are also highlighted. Mechanistic insights into the means of C–O activation and C–C bond formation, where available, are also highlighted.
1 Introduction
2 Stoichiometric Reductive Coupling of Alcohols
3 Catalytic Reductive Coupling of Alcohols
3.1 Heterogeneous Catalysis
3.2 Homogeneous Catalysis
4 Reductive Cross-Coupling of Alcohols
4.1 Reductive Alkylation
4.2 Reductive Addition to Olefins
5 Epoxide Reductive Coupling Reactions
6 Conclusions and Future Directions
Key words
renewable feedstocks - alcohols - epoxides - transition-metal catalysts - reductive coupling - cross-couplingPublication History
Received: 24 June 2020
Accepted after revision: 04 August 2020
Article published online:
07 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
- 1b de Meijere A, Bräse S, Oestreich M. Metal Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014
- 2a Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 2b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 3a Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
- 3b Deraedt C, d’Halluin M, Astruc D. Eur. J. Inorg. Chem. 2013; 4881
- 4a Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
- 4b Borner A, Franke R. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis. Wiley-VCH; Weinheim: 2016
- 5a Finiels A, Fajula F, Hulea V. Catal. Sci. Technol. 2014; 4: 2412
- 5b Agapie T. Coord. Chem. Rev. 2011; 255: 861
- 6a Walker TW, Motagamwala AH, Dumesic JA, Huber GW. J. Catal. 2019; 369: 518
- 6b Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Chem. Soc. Rev. 2018; 47: 8349
- 7 Boucher-Jacobs C, Nicholas KM. Top. Curr. Chem. 2014; 353: 163
- 8a Donnelly LJ, Thomas SP, Love JB. Chem. Asian J. 2019; 14: 3782
- 8b Tshibalonza NN, Monbaliu J.-CM. Green Chem. 2020; 22: 4801
- 9 Gabriëls D, Hernández WY, Sels B, Van Der Voort P, Verberckmoes A. Catal. Sci. Technol. 2015; 5: 3876
- 10a Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026 ; and references cited therein
- 10b Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
- 11 van Tamelen EE, Schwartz MA. J. Am. Chem. Soc. 1965; 87: 3277
- 12a van Tamelen EE, Akermark B, Sharpless KB. J. Am. Chem. Soc. 1969; 91: 1552
- 12b Sharpless KB, van Tamelen EE, van Tamelen EE. J. Am. Chem. Soc. 1968; 90: 209
- 13 McMurry JE. Acc. Chem. Res. 1974; 7: 281
- 14 McMurry JE, Silvestri M. J. Org. Chem. 1975; 40: 2687
- 15 Sato M, Oshima K. Chem. Lett. 1982; 11: 157
- 16 Alper H, Salisova M. Tetrahedron Lett. 1980; 21: 801
- 17 Prieto C, González Delgado JA, Arteaga JF, Jaraíz M, López-Pérez JL, Barrero AF. Org. Biomol. Chem. 2015; 13: 3462
- 18 Xiang Y.-G, Wang X.-W, Zheng X, Ruan Y.-P, Huang P.-Q. Chem. Commun. 2009; 45: 7045
- 19 Suga T, Shimazu S, Ukaji Y. Org. Lett. 2018; 20: 5389
- 20a Teobold BJ. Tetrahedron 2002; 58: 4133
- 20b Nicholas KM. Acc. Chem. Res. 1987; 20: 207
- 20c Green JR, Nicholas KM. Propargylic Coupling Reactions via Bimetallic Alkyne Complexes: The Nicholas Reaction. In Organic Reactions, Vol. 103b, Chap. 3. John Wiley& Sons, Inc.; 2020: 934
- 21a Melikyan GG, Khan MA, Nicholas KM. Organometallics 1995; 14: 2170
- 21b Melikyan GG, Combs RC, Lamirand J, Khan M, Nicholas KM. Tetrahedron Lett. 1994; 35: 363
- 22a Melikyan GG. Acc. Chem. Res. 2015; 48: 1065
- 22b Melikyan GG. Ligand-Based Organometallic Radical Chemistry: An Emerging Interdisciplinary Field. In Frontiers in Organometallic Chemistry, Chap. 7. Cato MA. Nova Science Publishers; New York: 2006: 155
- 23 Tsodikov MV, Kugel VY, Yandieva FA, Mordovin VP, Gekhman AE, Moiseev II. Pure Appl. Chem. 2004; 76: 1769
- 24 Tsodikov MV, Yandieva FA, Kugel VY, Chistyakov AV, Gekhman AE, Moiseev II. Catal. Lett. 2008; 121: 199
- 25 Glebov LS, Zaikin VG, Mikaya AI, Kliger GA. Pet. Chem. 2014; 54: 296
- 26 Onodera G, Nishibayashi Y, Uemura S. Organometallics 2006; 25: 35
- 27 Kasner GR, Boucher-Jacobs C, McClain JM, Nicholas KM. Chem. Commun. 2016; 52: 7257
- 28 Boucher-Jacobs C, Liu P, Nicholas KM. Organometallics 2018; 37: 2468
- 29 Larsen DB, Petersen AR, Dethlefsen JR, Teshome A, Fristrup P. Chem. Eur. J. 2016; 22: 16621
- 30 Steffensmeier E, Nicholas KM. Chem. Commun. 2018; 54: 790
- 31 Steffensmeier E, Swann MT, Nicholas KM. Inorg. Chem. 2019; 58: 844
- 32 Griffin SE, Schafer LL. Inorg. Chem. 2020; 59: 5256
- 33 Cao Z.-C, Yu D.-G, Zhu R.-Y, Wei J.-B, Shi Z.-J. Chem. Commun. 2015; 51: 2683
- 34 Yu D.-G, Wang X, Zhu R.-Y, Luo S, Zhang X.-B, Wang B.-Q, Wang L, Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
- 35 Yu D.-G, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
- 36 Yang B, Wang Z.-X. J. Org. Chem. 2020; 85: 4772
- 37 Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
- 38 Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494
- 39 Schwartz LA, Holmes M, Brito GA, Gonçalves TP, Richardson J, Ruble JC, Huang K.-W, Krische MJ. J. Am. Chem. Soc. 2019; 141: 2087
- 40 Bandari C, Nicholas KM. J. Org. Chem. 2020; 85: 3320
- 41a Botubol-Ares JM, Durán-Peña MJ, Hanson JR, Hernández-Galán R, Collado IG. Synthesis 2018; 50: 2163
- 41b McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
- 42 Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
- 43 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1989; 111: 4525
- 44 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
- 45 Gansauer A, Barchuk A, Keller F, Schmitt M, Grimme S, Gerenkamp M, Muck-Lichtenfeld C, Daasbjerg K, Svith H. J. Am. Chem. Soc. 2007; 129: 1359
- 46a Gansäuer A, Rinker B, Pierobon M, Grimme S, Gerenkamp M, Mück-Lichtenfeld C. Angew. Chem. Int. Ed. 2003; 42: 3687
- 46b Lin Z, Lan Y, Wang C. Org. Lett. 2020; 22: 3509
- 46c Gansäuer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
- 47a Gansäuer A, Lauterbach T, Geich-Gimbel D. Chem. Eur. J. 2004; 10: 4983
- 47b Fernández-Mateos A, Madrazo SE, Teijón PH, González RR. J. Org. Chem. 2009; 74: 3913
- 48 Gonzalez-Delgado JA, Arteaga JF. Eur. J. Org. Chem. 2019; 7864
- 49 Barrero AF, Quílez del Moral JF, Sánchez EM, Arteaga JF. Org. Lett. 2006; 8: 669
- 50 Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 391
- 51a Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
- 51b Molinaro C, Jamison TF. J. Am. Chem. Soc. 2003; 125, 8076
- 51c Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
- 52 Beaver MG, Jamison TF. Org. Lett. 2011; 13: 4140